PRELIMINARY

MOSEL VITELIC V29C51002T/V29C51002B 2 MEGABIT (262,144 x 8 BIT) 5 VOLT CMOS FLASH MEMORY

Features

- 256Kx8-bit Organization
- Address Access Time: 55, 90 ns
- Single 5V ± 10% Power Supply
- Sector Erase Mode Operation
- 16KB Boot Block (lockable)
- 512 bytes per Sector, 512 Sectors
 - Sector-Erase Cycle Time: 10ms (Max)
 - Byte-Write Cycle Time: 20µs (Max)
- Minimum 10,000 Erase-Program Cycles
- Low power dissipation
 - Active Read Current: 20mA (Typ)
 - Active Program Current: 30mA (Typ)
 - Standby Current: 100µA (Max)
- Hardware Data Protection
- Low V_{CC} Program Inhibit Below 3.5V
- Self-timed write/erase operations with end-of-cycle detection
 - DATA Polling
 - Toggle Bit
- CMOS and TTL Interface
- Available in two versions
 - V29C51002T (Top Boot Block)
 - V29C51002B (Bottom Boot Block)
- Packages:
 - 32-pin Plastic DIP
 - 32-pin TSOP-I
 - 32-pin PLCC

Description

The V29C51002T/V29C51002B is a high speed 262,144 x 8 bit CMOS flash memory. Writing or erasing the device is done with a single 5 Volt power supply. The device has separate chip enable \overline{CE} , write enable \overline{WE} , and output enable \overline{OE} controls to eliminate bus contention.

The V29C51002T/V29C51002B offers a combination of: Boot Block with Sector Erase/Write Mode. The end of write/erase cycle is detected by DATA Polling of I/O_7 or by the Toggle Bit I/O_6 .

The V29C51002T/V29C51002B features a sector erase operation which allows each sector to be erased and reprogrammed without affecting data stored in other sectors. The device also supports full chip erase.

Boot block architecture enables the device to boot from a protected sector located either at the top (V29C51002T) or the bottom (V29C51002B). All inputs and outputs are CMOS and TTL compatible.

The V29C51002T/V29C51002B is ideal for applications that require updatable code and data storage.

Device Usage Chart

Operating	Р	ackage Outlin	e	Access	Гime (ns)	Tomporaturo	
Range	Р	т	J	55	90	Mark	
0°C to 70°C	•	•	•	•	•	Blank	

V29C51002T/V29C51002B

Pin Configurations

Pin Names

A ₀ -A ₁₇	Address Inputs
I/O ₀ -I/O ₇	Data Input/Output
CE	Chip Enable
ŌĒ	Output Enable
WE	Write Enable
V _{CC}	$5V \pm 10\%$ Power Supply
GND	Ground
NC	No Connect

V29C51002T/V29C51002B

Functional Block Diagram

Capacitance (1,2)

Symbol	Parameter	Test Setup	Тур.	Max.	Units
C _{IN}	Input Capacitance	$V_{IN} = 0$	6	8	pF
C _{OUT}	Output Capacitance	V _{OUT} = 0	8	12	pF
C _{IN2}	Control Pin Capacitance	$V_{IN} = 0$	8	10	pF

NOTE:

1. Capacitance is sampled and not 100% tested.

2. $T_A = 25^{\circ}C$, $V_{CC} = 5V \pm 10\%$, f = 1 MHz.

Latch Up Characteristics⁽¹⁾

Parameter	Min.	Max.	Unit
Input Voltage with Respect to GND on A_9 , \overline{OE}	-1	+13	V
Input Voltage with Respect to GND on I/O, address or control pins	-1	V _{CC} + 1	V
V _{CC} Current	-100	+100	mA

NOTE:

1. Includes all pins except V_{CC}. Test conditions: V_{CC} = 5V, one pin at a time.

AC Test Load

V29C51002T/V29C51002B

Absolute Maximum Ratings⁽¹⁾

Symbol	Parameter	Commercial	Unit
V _{IN}	Input Voltage (input or I/O pins)	-2 to +7	V
V _{IN}	Input Voltage (A ₉ pin, OE)	-2 to +13	V
V _{CC}	Power Supply Voltage	-0.5 to +5.5	V
T _{STG}	Storage Temerpature (Plastic)	-65 to +125	°C
T _{OPR}	Operating Temperature	0 to +70	°C
I _{OUT}	Short Circuit Current ⁽²⁾	200 (Max.)	mA

NOTE:

1. Stress greater than those listed unders "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

2. No more than one output maybe shorted at a time and not exceeding one second long.

DC Electrical Characteristics

(over the commercial operating range)

Parameter Name	Parameter	Test Conditions	Min.	Max.	Unit
V _{IL}	Input LOW Voltage	$V_{CC} = V_{CC}$ Min.	—	0.8	V
V _{IH}	Input HIGH Voltage	$V_{CC} = V_{CC}$ Max.	2		V
IIL	Input Leakage Current	$V_{IN} = GND$ to V_{CC} , $V_{CC} = V_{CC}$ Max.	_	±1	μA
I _{OL}	Output Leakage Current	$V_{OUT} = GND$ to V_{CC} , $V_{CC} = V_{CC}$ Max.	_	±10	μA
V _{OL}	Output LOW Voltage	$V_{CC} = V_{CC}$ Min., $I_{OL} = 2.1$ mA	_	0.4	V
V _{OH}	Output HIGH Voltage	$V_{CC} = V_{CC}$ Min, $I_{OH} = -400 \mu A$	2.4	-	V
I _{CC1}	Read Current	$\label{eq:cell} \begin{split} \overline{CE} &= \overline{OE} = V_{IL}, \ \overline{WE} = V_{IH}, \ \text{all I/Os open}, \\ \text{Address input} &= V_{IL}/V_{IH}, \ \text{at } f = 1/t_{RC} \ \text{Min.}, \\ V_{CC} &= V_{CC} \ \text{Max}. \end{split}$	_	40	mA
I _{CC2}	Write Current	$\overline{CE} = \overline{WE} = VIL, \overline{OE} = V_{IH}, V_{CC} = V_{CC} Max.$	_	50	mA
I _{SB}	TTL Standby Current	$\overline{CE} = \overline{OE} = \overline{WE} = V_{IH}, V_{CC} = V_{CC} Max.$	_	2	mA
I _{SB1}	CMOS Standby Current	$\overline{CE} = \overline{OE} = \overline{WE} = V_{CC} - 0.3V, V_{CC} = V_{CC} Max.$	_	100	μA
V _H	Device ID Voltage for A ₉	$\overline{CE} = \overline{OE} = V_{IL}, \overline{WE} = V_{IH}$	11.5	12.5	V
I _H	Device ID Current for A ₉	$\overline{CE} = \overline{OE} = V_{IL}, \overline{WE} = V_{IH}, A9 = V_H Max.$	_	50	μA

V29C51002T/V29C51002B

AC Electrical Characteristics

(over all temperature ranges)

Read Cycle

Paramotor		-5	55	.ę		
Name	Parameter	Min.	Max.	Min.	Max.	Unit
t _{RC}	Read Cycle Time	55	_	90	_	ns
t _{AA}	Address Access Time	—	55	_	90	ns
tACS	Chip Enable Access Time	—	55	_	90	ns
tOE	Output Enable Access Time	_	25	_	45	ns
^t CLZ	CE Low to Output Active	0	—	0	—	ns
tolz	OE Low to Output Active	0	—	0	—	ns
t _{DF}	\overline{OE} or \overline{CE} High to Output in High Z	0	30	0	40	ns
t _{ОН}	Output Hold from Address Change	0	_	0	_	ns

Program (Erase/Program) Cycle

Parameter			-55			-90		
Name	Parameter	Min.	Тур.	Max.	Min.	Тур.	Max.	Unit
t _{WC}	Write Cycle Time	55	_	_	90	_	_	ns
t _{AS}	Address Setup Time	0	—	—	0	_	_	ns
t _{AH}	Address Hold Time	35	—	—	45	_	—	ns
t _{CS}	CE Setup Time	0	_	_	0	_	_	ns
^t CH	CE Hold Time	0	_	_	0	_	_	ns
t _{OES}	OE Setup Time	0	—	—	0	_	—	ns
t _{OEH}	OE High Hold Time	0	_	_	0	_	_	ns
t _{WP}	WE Pulse Width	30	_	_	45	_	_	ns
t _{WPH}	WE Pulse Width High	20	_	_	30	_	_	ns
t _{DS}	Data Setup Time	25	_	_	30	_	_	ns
^t DH	Data Hold Time	0	_	_	0	_	_	ns
t _{WHWH1}	Programming Cycle	_	_	20	_	_	20	μs
t _{WHWH2}	Sector Erase Cycle	_	_	10	_	_	10	ms
twhwh3	Chip Erase Cycle	_	2	_	_	2	_	sec

V29C51002T/V29C51002B

Waveforms of Read Cycle

Waveforms of WE Controlled-Program Cycle

NOTES:

- 1. I/O₇: The output is the complement of the data written to the device.
- 2. PA: The address of the memory location to be programmed.
- 3. PD: The data at the byte address to be programmed.

V29C51002T/V29C51002B

MOSEL VITELIC

Waveforms of CE Controlled-Program Cycle

Waveforms of Erase Cycle⁽¹⁾

NOTES:

- 1. PA: The address of the memory location to be programmed.
- 2. PD: The data at the byte address to be programmed.
- 3. SA: The sector address for Sector Erase.

V29C51002T/V29C51002B

Waveforms of Toggle Bit Cycle

Functional Description

The V29C51002T/V29C51002B consists of 512 equally-sized sectors of 512 bytes each. The 16 KB lockable Boot Block is intended for storage of the system BIOS boot code. The boot code is the first piece of code executed each time the system is powered on or rebooted.

The V29C51002 is available in two versions: the V29C51002T with the Boot Block address starting from 3C000H to 3FFFFH, and the V29C51002B with the Boot Block address starting from 00000H to 3FFFFH.

Read Cycle

A read cycle is performed by holding both \overline{CE} and \overline{OE} signals LOW. Data Out becomes valid only when these conditions are met. During a read cycle \overline{WE} must be HIGH prior to \overline{CE} and \overline{OE} going LOW. \overline{WE} must remain HIGH during the read operation for the read to complete (see Table 1).

Output Disable

Returning \overline{OE} or \overline{CE} HIGH, whichever occurs first will terminate the read operation and place the I/O pins in the HIGH-Z state.

Standby

The device will enter standby mode when the \overline{CE} signal is HIGH. The I/O pins are placed in the HIGH-Z, independent of the \overline{OE} input state.

Byte Write Cycle

The V29C51002T/V29C51002B is programmed on a byte-by-byte basis. The byte write operation is initiated by using a specific four-bus-cycle sequence: two unlock program cycles, a program setup command and program data program cycles (see Table 2).

16KB Boot Block = 32 Sectors

During the byte write cycle, addresses are latched on the falling edge of either \overline{CE} or \overline{WE} , whichever is last. Data is latched on the rising edge of \overline{CE} or \overline{WE} , whichever is first. The byte write cycle can be \overline{CE} controlled or \overline{WE} controlled.

Sector Erase Cycle

The V29C51002T/V29C51002B features a sector erase operation which allows each sector to be erased and reprogrammed without affecting data stored in other sectors. Sector erase operation is initiated by using a specific six-bus-cycle sequence: Two unlock program cycles, a setup command, two additional unlock program cycles, and the sector erase command (see Table 2). A sector must be first erased before it can be rewritten. While in the internal erase mode, the device ignores any program attempt into the device. The internal erase completion can be determined via DATA polling or toggle bit status.

The V29C51002T/V29C51002B is shipped fully erased (all bits = 1).

Decoding Mode	CE	OE	WE	A ₀	A ₁	A ₉	I/O
Read	V _{IL}	V _{IL}	V _{IH}	A ₀	A ₁	A ₉	READ
Byte Write	V _{IL}	V _{IH}	V _{IL}	A ₀	A ₁	A ₉	PD
Standby	V _{IH}	Х	Х	Х	Х	Х	HIGH-Z
Autoselect Device ID	V _{IL}	V _{IL}	V _{IH}	V _{IH}	V _{IL}	V _H	CODE
Autoselect Manufacture ID	V _{IL}	V _{IL}	V _{IH}	V _{IL}	V _{IL}	V _H	CODE
Enabling Boot Block Protection Lock	V _{IL}	V _H	V _{IL}	Х	Х	V _H	X
Disabling Boot Block Protection Lock	V _H	V _H	V _{IL}	Х	Х	V _H	X
Output Disable	Vii	Vill	Vill	Х	Х	Х	HIGH-Z

Table 1. Operation Modes Decoding

NOTES:

1. X = Don't Care, V_{IH} = HIGH, V_{IL} = LOW, V_{H} = 12.5V Max.

2. PD: The data at the byte address to be programmed.

V29C51002T/V29C51002B

V29C51002T/V29C51002B

Table 2. Command Codes

Command	First Bus Program	Cycle	Second B Program	us Cycle	Third Bus Program	Cycle	Fourth Bus Program Cycle		Fifth Bus Program Cycle		Six Bus Program Cycle	
Sequence	Address	Data	Address	Data	Address	Data	Address	Data	Address	Data	Address	Data
Read	ххххн	F0H										
Read	5555H	AAH	2AAAH	55H	5555H	F0H	RA(1)	RD(2)				
Autoselect Mode	5555H	AAH	2AAAH	55H	5555H	90H	See table 3 f	See table 3 for detail.				
Byte Program	5555H	AAH	2AAAH	55H	5555H	A0H	PA	PD(4)				
Chip Erase	5555H	AAH	2AAAH	55H	5555H	80H	5555H	AAH	2AAAH	55H	5555H	10H
Sector Erase	5555H	AAH	2AAAH	55H	5555H	80H	5555H	AAH	2AAAH	55H	SA(5)	30H

NOTES:

1. RA: Read Address

2. RD: Read Data

3. PA: The address of the memory location to be programmed.

4. PD: The data at the byte address to be programmed.

5. SA(5): Sector Address

Chip Erase Cycle

The V29C51002T/V29C51002B features a chiperase operation. The chip erase operation is initiated by using a specific six-bus-cycle sequence: two unlock program cycles, a setup command, two additional unlock program cycles, and the chip erase command (see Table 2).

The automatic erase begins on the rising edge of the last \overline{WE} or \overline{CE} pulse in the command sequence and terminates when the data on DQ7 is "1".

Program Cycle Status Detection

There are two methods for determining the state of the V29C51002T/V29C51002B during a program (erase/write) cycle: DATA Polling (I/O₇) and Toggle Bit (I/O₆).

DATA Polling (I/O7)

The V29C51002T/V29C51002B features \overline{DATA} polling to indicate the end of a program cycle. When the device is in the program cycle, any attempt to read the device will received the complement of the loaded data on I/O₇. Once the program cycle is completed, I/O₇ will show true data, and the device is then ready for the next cycle.

Toggle Bit (I/O₆)

The V29C51002T/V29C51002B also features another method for determining the end of a program cycle. When the device is in the program cycle, any attempt to read the device will result in I/O_6 toggling between 1 and 0. Once the program is completed, the toggling will stop. The device is then ready for the next operation. Examining the toggle bit may begin at any time during a program cycle.

Boot Block Protection Enabling/Disabling

The V29C51002T/V29C51002B features hardware Boot Block Protection. The boot block sector protection is enabled when high voltage (12.5V) is applied to \overline{OE} and A9 pins with \overline{CE} pin LOW and \overline{WE} pin LOW. The sector protection is disabled when high voltage is applied to \overline{OE} , \overline{CE} and A9 pins with \overline{WE} pin LOW. Other pins can be HIGH or LOW. This is shown in table 1.

Autoselect Mode

The V29C51002T/V29C51002B features an Autoselect mode to identify boot block locking status, device ID and manufacturer ID.

Entering Autoselect mode is accomplished by applying a high voltage (VH) to the A9 Pin, or through a sequence of commands (as shown in table 2). Device will exit this mode once high voltage on A9 is removed or another command is loaded into the device.

V29C51002T/V29C51002B

Boot Block Protection Status

In Autoselect mode, performing a read at address location 3CXX2H (V29C51002T) or 0CXX2H (V29C51002B) will indicate boot block protection status. If the data is 01H, the boot block is protected. If the data is 00H, the boot block is unprotected. This is also shown is table 3.

Device ID

In Autoselect mode, performing a read at address XXX1H will determine whether the device is a Top Boot Block device or a Bottom Boot Block device. If the data is 02H, the device is a Top Boot Block. If the data is A2H, the device is a Bottom Boot Block device (see Table 3).

Manufacturer ID

In Autoselect mode, performing a read at address XXXX0H will determine the manufacturer ID. 40H is the manufacturer code for Mosel Vitelic Flash.

Hardware Data Protection

 V_{CC} Detection: the program operation is inhibited when VCC is less than 3.5V.

Noise Protection: a CE or WE pulse of less than 5ns will not initiate a program cycle.

Program Inhibit: holding any one of \overline{OE} LOW, \overline{CE} HIGH or \overline{WE} HIGH inhibits a program cycle.

			Add			
Decoding Mode	Boot Block	A ₀	A ₁	A ₂ -A ₁₃	A ₁₄ –A ₁₇	Data I/O ₀ -I/O ₇
Boot Block Protection	Тор	V _{IL}	V _{IH}	х	V _{IH}	01H: protected
	Bottom	V _{IL}	V _{IH}	х	V _{IL}	00H: unprotected
Device ID	Тор	V _{IH}	V _{IL}	Х	Х	02H
	Bottom					A2H
Manufacture ID		V _{IL}	V _{IL}	Х	Х	40H

NOTE:

1. $X = Don't Care, V_{IH} = HIGH, V_{IL} = LOW.$

V29C51002T/V29C51002B

Byte Program Algorithm

Chip/Sector Erase Algorithm

V29C51002T/V29C51002B

DATA Polling Algorithm

Toggle Bit Algorithm

NOTE:

1. PBA: The byte address to be programmed.

V29C51002T/V29C51002B

Package Diagrams

32-pin Plastic DIP

V29C51002T/V29C51002B

32-pin TSOP-I

Units in inches

U.S.A.

3910 NORTH FIRST STREET SAN JOSE, CA 95134 PHONE: 408-433-6000 FAX: 408-433-0952

HONG KONG

19 DAI FU STREET TAIPO INDUSTRIAL ESTATE TAIPO, NT, HONG KONG PHONE: 852-2666-3307 FAX: 852-2770-8011

WORLDWIDE OFFICES

MIN-CHUAN E. ROAD, SEC. 3

FAX: 886-2-2545-1209

SCIENCE BASED IND. PARK

HSIN CHU, TAIWAN, R.O.C.

FAX: 886-3-579-2838

PHONE: 886-3-578-3344

PHONE: 886-2-2545-1213

NO 19 LI HSIN RD.

TAIWAN

7F, NO. 102

TAIPFI

SINGAPORE

10 ANSON ROAD #23-13 INTERNATIONAL PLAZA SINGAPORE 079903 PHONE: 65-3231801 FAX: 65-3237013

JAPAN

WBG MARINE WEST 25F 6, NAKASE 2-CHOME MIHAMA-KU, CHIBA-SHI CHIBA 261-71 PHONE: 81-43-299-6000 FAX: 81-43-299-6555

V29C51002T/V29C51002B

IRELAND & UK

BLOCK A UNIT 2 BROOMFIELD BUSINESS PARK MALAHIDE CO. DUBLIN, IRELAND PHONE: +353 1 8038020 FAX: +353 1 8038049

GERMANY (CONTINENTAL EUROPE & ISRAEL) 71083 HERRENBERG

BENZSTR. 32 GERMANY PHONE: +49 7032 2796-0 FAX: +49 7032 2796 22

U.S. SALES OFFICES

NORTHWESTERN

3910 NORTH FIRST STREET SAN JOSE, CA 95134 PHONE: 408-433-6000 FAX: 408-433-0952

NORTHEASTERN

20 TRAFALGAR SQUARE NASHUA, NH 03063 PHONE: 603-889-4393 FAX: 603-889-9347

NORTHEASTERN

SUITE 436 20 TRAFALGAR SQUARE NASHUA, NH 03063 PHONE: 603-889-4393 FAX: 603-889-9347

SOUTHWESTERN

SUITE 200 5150 E. PACIFIC COAST HWY. LONG BEACH, CA 90804 PHONE: 562-498-3314 FAX: 562-597-2174

CENTRAL & SOUTHEASTERN

604 FIELDWOOD CIRCLE RICHARDSON, TX 75081 PHONE: 972-690-1402 FAX: 972-690-0341

© Copyright 1999, MOSEL VITELIC Inc.

7/99 Printed in U.S.A

The information in this document is subject to change without notice.

MOSEL VITELIC makes no commitment to update or keep current the information contained in this document. No part of this document may be copied or reproduced in any form or by any means without the prior written consent of MOSEL-VITELIC. MOSEL VITELIC subjects its products to normal quality control sampling techniques which are intended to provide an assurance of high quality products suitable for usual commercial applications. MOSEL VITELIC does not do testing appropriate to provide 100% product quality assurance and does not assume any liability for consequential or incidental arising from any use of its products. If such products are to be used in applications in which personal injury might occur from failure, purchaser must do its own quality assurance testing appropriate to such applications.