

|       | cription                                                                                                         |    |
|-------|------------------------------------------------------------------------------------------------------------------|----|
| Feat  | tures                                                                                                            | 3  |
| Pin C | Configuration                                                                                                    | 4  |
| Block | k Diagram                                                                                                        | 8  |
|       | Description                                                                                                      |    |
|       | cial Function Register (SFR)                                                                                     |    |
|       | ction Description                                                                                                |    |
| 1.    | General Features                                                                                                 |    |
| ••    | 1.1. Embedded Flash                                                                                              |    |
|       | 1.2. IO Pads                                                                                                     |    |
|       |                                                                                                                  |    |
|       | 1.3. 2T/1T Selection                                                                                             |    |
|       | 1.4. RESET                                                                                                       |    |
|       | 1.4.1. Hardware RESET function                                                                                   |    |
|       | 1.4.2. Software RESET function                                                                                   |    |
|       | 1.4.3. Time Access Key register (TAKEY)                                                                          |    |
|       | 1.4.4. Software Reset register (SWRES)                                                                           |    |
|       | 1.4.5. Reset Status Flag (RSTS)                                                                                  |    |
|       | 1.4.6. Example of software reset                                                                                 | 16 |
|       | 1.5. Clocks                                                                                                      | 16 |
| 2.    | Instruction Set                                                                                                  | 17 |
| 3.    | Memory Structure                                                                                                 |    |
| •     | 3.1. Program Memory                                                                                              |    |
|       | 3.2. Data Memory                                                                                                 |    |
|       | 3.2.1. Data memory - lower 128 byte (00H to 7FH)                                                                 |    |
|       | 3.2.2. Data memory - higher 128 byte (80H to FFH)                                                                |    |
|       | 3.2.3. Data memory - Expanded 1024 bytes (\$0000 to \$03FF)                                                      |    |
| 4     |                                                                                                                  |    |
| 4.    | CPU Engine                                                                                                       |    |
|       | 4.1. Accumulator                                                                                                 |    |
|       | 4.2. B Register                                                                                                  |    |
|       | 4.3. Program Status Word                                                                                         |    |
|       | 4.4. Stack Pointer                                                                                               |    |
|       | 4.5. Data Pointer                                                                                                |    |
|       | 4.6. Data Pointer 1                                                                                              | 27 |
|       | 4.7. Internal RAM control register                                                                               | 27 |
|       | 4.8. Interface control register                                                                                  |    |
| 5.    | GPIO                                                                                                             |    |
| 6.    | Timer 0 and Timer 1                                                                                              |    |
| •     | 6.1. Timer/counter mode control register (TMOD)                                                                  |    |
|       | 6.2. Timer/counter control register (TCON)                                                                       |    |
|       | 6.3. Peripheral Frequency control register (PFCON)                                                               |    |
|       | 6.4. Mode 0 (13-bit Counter/Timer)                                                                               |    |
|       |                                                                                                                  |    |
|       |                                                                                                                  |    |
|       | 6.6. Mode 2 (8-bit auto-reload Counter/Timer)                                                                    |    |
| _     | 6.7. Mode 3 (Timer 0 acts as two independent 8 bit Timers / Counters)                                            |    |
| 7.    | Timer 2 and Capture/Compare Unit                                                                                 |    |
|       | 7.1. Timer 2 function                                                                                            | 37 |
|       | 7.1.1. Timer mode                                                                                                | -  |
|       | 7.1.2. Event counter mode                                                                                        | 37 |
|       | 7.1.3. Gated timer mode                                                                                          | 37 |
|       | 7.1.4. Reload of Timer 2                                                                                         | 37 |
|       | 7.2. Compare function                                                                                            |    |
|       | 7.2.1. Compare Mode 0                                                                                            |    |
|       | 7.2.2. Compare Mode 1                                                                                            |    |
|       | 7.3. Capture function                                                                                            |    |
|       | 7.3.1. Capture Mode 0                                                                                            |    |
|       |                                                                                                                  |    |
| 0     | I                                                                                                                |    |
| 8.    | Serial interface 0                                                                                               | 40 |
| Spec  | cifications subject to change without notice contact your sales representatives for the most recent information. | _  |



|      | 8.1.      | Serial interface 0                                           | 41 |
|------|-----------|--------------------------------------------------------------|----|
|      | 8.1       | I.1. Mode 0                                                  | 41 |
|      | 8.1       | I.2. Mode 1                                                  | 42 |
|      | 8.1       | I.3. Mode 2                                                  | 42 |
|      | 8.1       | I.4. Mode 3                                                  | 42 |
|      | 8.2.      | Multiprocessor communication of Serial Interface 0           | 43 |
|      |           | Baud rate generator                                          |    |
|      |           | 3.1. Serial interface 0 modes 1 and 3                        |    |
| 9.   | Watchdo   | og timer                                                     | 44 |
| 10.  |           | errupt                                                       |    |
|      | 10.1.     | •                                                            |    |
| 11.  | Po        | wer Management Unit                                          |    |
|      |           | Idle mode                                                    |    |
|      | 11.2.     | Stop mode                                                    | 51 |
| 12.  | Pu        | Ise Width Modulation (PWM)                                   | 52 |
| 13.  | IIC       | function                                                     | 55 |
| 14.  | SP        | Pl function                                                  | 59 |
| 15.  | LV        | I – Low Voltage Interrupt                                    | 63 |
| 16.  |           | System Programming (Internal ISP)                            |    |
|      | 16.1.     | ISP service program                                          | 64 |
|      | 16.2.     | Lock Bit (N)                                                 | 64 |
|      | 16.3.     | Program the ISP Service Program                              | 65 |
|      | 16.4.     | Initiate ISP Service Program                                 |    |
|      | 16.5.     | ISP register – TAKEY, IFCON, ISPFAH, ISPFAL, ISPFD and ISPFC | 65 |
| Ope  | rating Co | nditions                                                     | 68 |
| DC ( | Character | ristics                                                      | 68 |



# Product List

SM59R16G6W40PP, SM59R09G6W40PP, SM59R05G6W40PP, SM59R16G6W44JP, SM59R09G6W44JP, SM59R05G6W44JP SM59R16G6W44QP, SM59R09G6W44QP, SM59R05G6W44QP, SM59R16G6W44UP, SM59R09G6W44UP, SM59R05G6W44UP, SM59R16G6W48VP, SM59R09G6W48VP, SM59R05G6W48VP

## Description

The SM59R16G6 is a 1T (one machine cycle per clock) single-chip 8-bit microcontroller. It has 64K-byte embedded Flash for program, and executes all ASM51 instructions fully compatible with MCS-51. SM59R16G6 contains 1KB on-chip RAM, more than 46 GPIOs (LQFP 48), various serial interfaces and many peripheral functions as described below. It can be programmed via writers. Its on-chip ICE is convenient for users in verification during development stage. The high performance of SM59R16G6 can achieve complicated manipulation within short time. About one third of the instructions are pure 1T, and the average speed is 8 times of traditional 8051, the fastest one among all the 1T 51-series. Its excellent EMI and ESD characteristics are advantageous for many different applications.

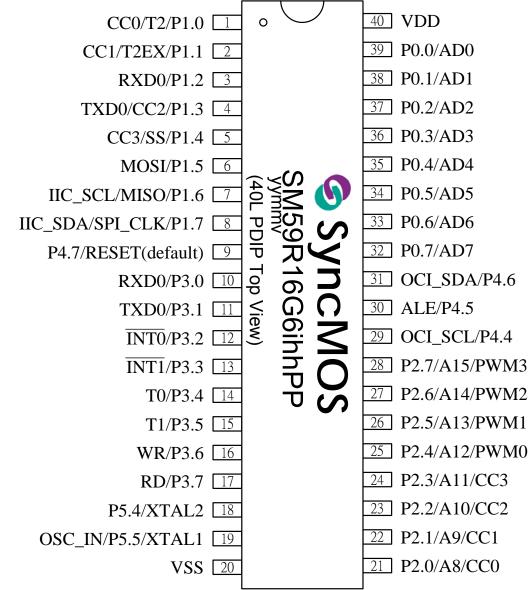
### **Ordering Information**

SM59R16G6ihhkL yymmv i: process identifier {W = 2.7V ~ 5.5V} hh: Pin count k: package type postfix {as table below } L:PB Free identifier {No text is Non-PB free , "P" is PB free} yy: year mm: month v: version identifier{ A, B,...}

| Postfix Package   |          | Pin / Pad Configuration |  |  |
|-------------------|----------|-------------------------|--|--|
| P 40L PDIP Page 4 |          | Page 4                  |  |  |
| J 44L PLCC        |          | Page 5                  |  |  |
| Q 44L PQFP        |          | Page 6                  |  |  |
| U 44L LQFP        |          | Page 6                  |  |  |
| V                 | 48L LQFP | Page 7                  |  |  |

Contact SyncMOS : www.syncmos.com.tw 6F, No.10-2 Li- Hsin 1st Road , SBIP, Hsinchu, Taiwan TEL: 886-3-567-1820 FAX: 886-3-567-1891

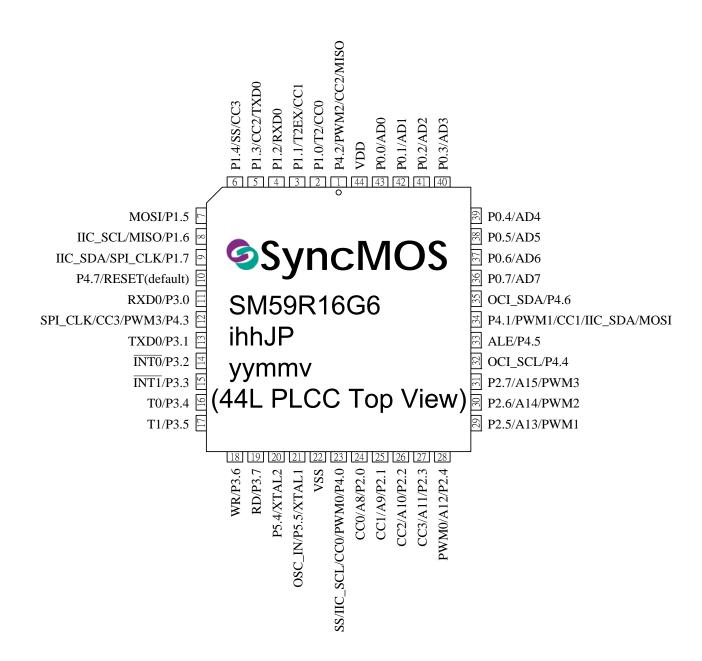
#### SM59R16G6/SM59R09G6/SM59R05G6 8-Bit Micro-controller 64KB/36KB/20KB with ISP Flash & 1KB RAM embedded

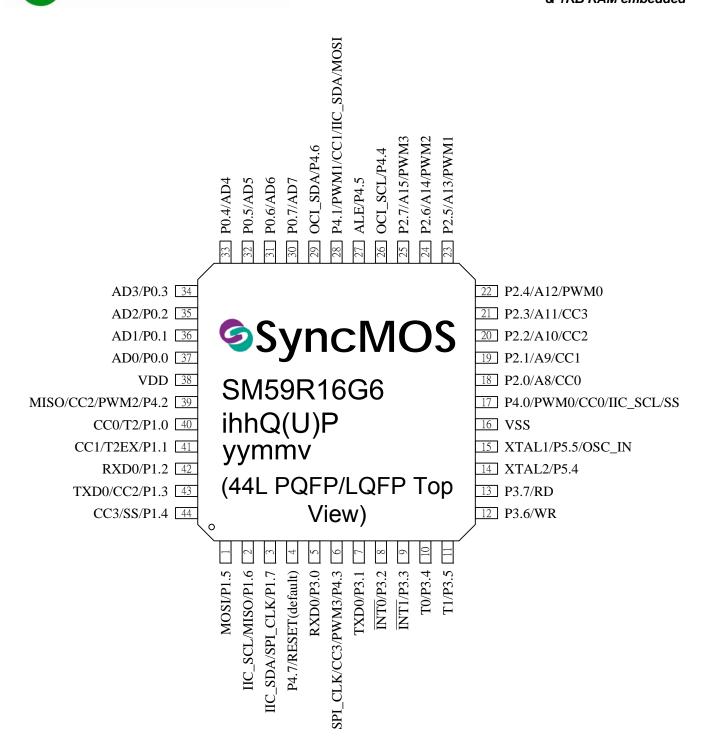

### Features

- Operating Voltage: 2.7V ~ 5.5V
- High speed architecture of 1 clock/machine cycle (1T), runs up to 25MHz
- 1T/2T can be switched on the fly by SFR
- Instruction-set compatible with MCS-51
- 64K/36K/20KBytes on-chip program memory.
- External RAM addresses up to 64K bytes.
   Standard 12T interface for external RAM access.
- 256 bytes RAM as standard 8052, plus 1K bytes on-chip expandable RAM
- Dual 16-bit Data Pointers (DPTR0 & DPTR1)
- One serial peripheral interfaces in full duplex mode (UART0),
- Additional Baud Rate Generator for Serial 0.
- Three 16-bit Timers/Counters. (Timer 0 , 1, 2)
- 38 GPIOs(PDIP 40) · 42 GPIOs(PLCC 44/PQFP 44/LQFP 44) · 46 GPIOs(LQFP 48),GPIOs can select four Type(quasi-bidirectional · push-pull · open drain · input-only) · default is quasi-bidirectional(pull-up)
- External interrupt 0,1 with four priority levels
- Programmable watchdog timer (WDT)
- One IIC interface (Master/Slave mode)
- One SPI interface (Master/Slave mode)
- 4-channel PWM on port 2 or port 4 (default)
- 4-channel 16-bit compare /capture /load functions
- 22.1184MHz Internal RC oscillator, with programmable clock divider
- Configurable Oscillator pin
- ISP/IAP/ICP functions.
- ISP service program space configurable in N\*256 byte (N=0 to 16) size.
- EEPROM function
- On-chip in-circuit emulator (ICE) function with On-Chip Debugger (OCD)
- ALE output select.
- LVI/LVR ±5% (LVR deglitch 500ns)
- Enhanced user code protection
- Power management unit for idle and power down modes

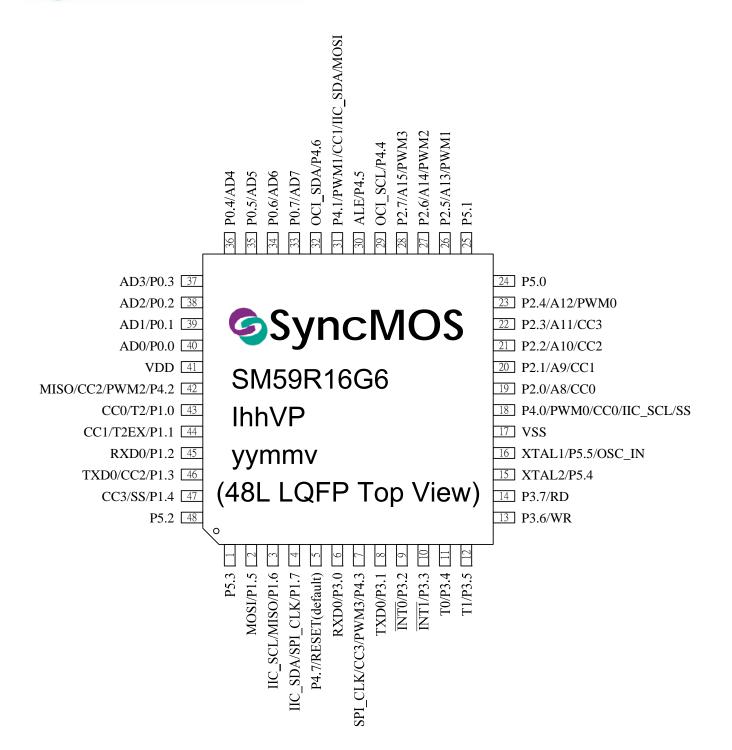
Specifications subject to change without notice contact your sales representatives for the most recent information.ISSFD-M0593Ver.GSM59R16G602/2012




### **Pin Configuration**

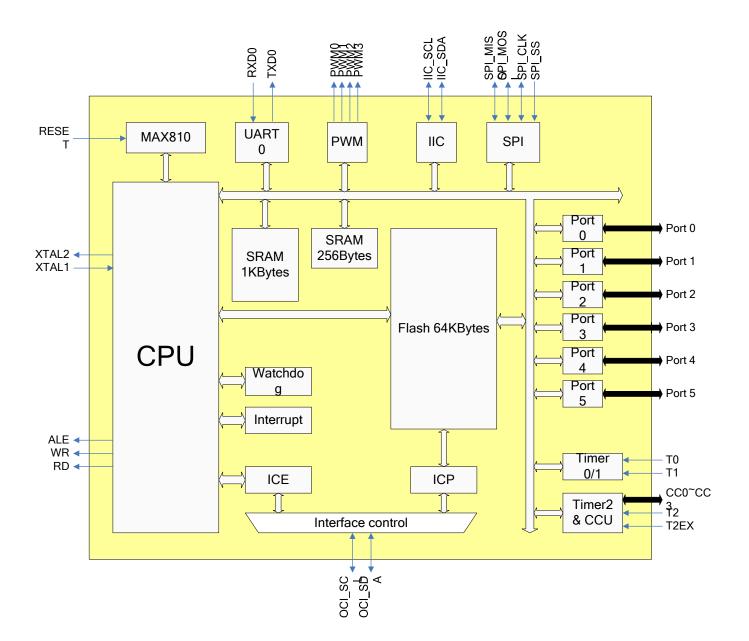



Notes :


- 1. The pin Reset/P4.7 factory default is Reset, user must keep this pin at low during power-up. User can configure it to GPIO (P4.7) by a flash programmer.
- To avoid accidentally entering ISP-Mode(refer to section 16.4), care must be taken not asserting pulse signal at P3.0 during power-up while P2.6 
   P2.7 
   P4.3 are set to high.
- 3. To apply ICP function, OSI\_SDA/P4.6 and OCI\_SCL/P4.7 must be set to Bi-direction mode if they are configured as GPIO in system.














### **Block Diagram**





# **Pin Description**

| 1         39         42         P4.2/PWM2/CC2/<br>MISO         ///<br>// MISO         ///<br>//<br>//<br>//<br>//<br>//<br>//<br>//<br>//<br>//<br>//<br>//<br>//                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 40L<br>PDIP | 44L<br>PLCC | 44L<br>PQFP/<br>LQFP | 48L<br>LQFP | Symbol        | I/O                                                           | Description                                                                                                               |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-------------|----------------------|-------------|---------------|---------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|--|
| 1         2         40         43         P1.0/T2/CU0         I/0         compare/capture Channel 0           2         3         41         44         P1.1/T2EX/CC1         I/0         Bit 1 of port 1 & Serial interface channel 0 receive data           3         4         42         45         P1.2/RXD0         I/0         Bit 2 of port 1 & Serial interface channel 0 receive data           4         5         43         46         P1.3/TXD0/CC2         I/0         Bit 3 of port 1 & Serial interface channel 0 transmit data or receive clock in mode 0 & Timer 2 compare/capture Channel 2           5         6         44         47         P1.4/SS/CC3         I/0         Bit 3 of port 1 & Serial interface Serial Data Master Output or Slave Input pin 5           6         7         1         2         P1.5/MOS1         I/0         Bit 6 of port 1 & SP1 interface Serial Data Master Output or Slave Input pin 8 IIC SCL pin           7         8         2         3         P1.5/MOS1         I/0         Bit 6 of port 1 & SP1 interface Clock pin 8 IIC SDA pin           8         9         3         4         P1.7/SP1 CLK/         I/0         Bit 3 of port 3 & Serial interface channel 0 receive/transmit data           10         11         5         6         P3.0/RXD0         I/0         Bit 3 of port 3 & Serial interf                                                                                                        |             | 1           | 39                   | 42          |               | I/O                                                           | Channel 2 & SPI interface Serial Data Master Input or Slave<br>Output pin                                                 |  |
| 2         3         41         44         P1://I2EX0C1         I/O         compare/capture Channel 1         1           3         4         42         45         P1.3/TXD0/CC2         I/O         Bit 3 of port 1 & Serial interface channel 0 transmit data or receive clock in mode 0 & Timer 2 compare/capture Channel 2           5         6         44         47         P1.4/SS/CC3         I/O         Bit 3 of port 1 & Serial interface channel 0 transmit data or receive clock in mode 0 & Timer 2 compare/capture Channel 3           5         6         44         47         P1.4/SS/CC3         I/O         Bit 3 of port 1 & SPI interface Serial Data Master Output or Siave Opt 1 & SPI interface Serial Data Master Output or Siave Opt 1 & SPI interface Serial Data Master Input or Siave Output pin & IIC SCL pin           7         8         2         3         IIC ScL         I/O         Bit 6 of port 1 & SPI interface Clock pin & IIC SDA pin           8         9         3         4         P1.7/SPI_CLK/         I/O         Bit 7 of port 1 & SPI interface Clock pin & IIC SDA pin           10         11         5         6         P3.0/RXD0         I/O         Reset pin(default) & Bit 7 of port 4           11         13         7         8         9         3.4/TXD0         I/O           12         6         7         P4.3/PWM3/CC3/<br>S                                                                                   | 1           | 2           | 40                   | 43          | P1.0/T2/CC0   | I/O                                                           | compare/capture Channel 0                                                                                                 |  |
| 4         5         43         46         P1.3/TXD0/CC2         I/0         Bit 3 of port 1 & Serial interface channel 0 transmit data or receive clock in mode 0 & Timer 2 compare/capture Channel 2           5         6         44         47         P1.4/SS/CC3         I/0         Bit 4 of port 1 & SPI interface Slave Select pin & Timer 2           6         7         1         2         P1.5/MOSI         I/0         Bit 2 of port 5           6         7         1         2         P1.5/MOSI         I/0         Bit 3 of port 1 & SPI interface Serial Data Master Output or Slave Input pin           7         8         2         3         IIC_SCL         I/0         Bit 6 of port 1 & SPI interface Serial Data Master Output or Slave Input pin           8         9         3         4         IIC_SCL         I/0         Bit 7 of port 1 & SPI interface Clock pin & IIC SDA pin           9         10         4         5         RESET(default)/P         I/0         Reset pin(default) & Bit 7 of port 4           10         11         5         6         P3.0/RXD0         I/0         Bit 1 of port 3 & Serial interface channel 0 transmit data or receive clock in mode 0           11         13         7         8         P3.2/#INT0         I/0         Bit 1 of port 3 & Serial interface channel 0 transmit data or receive                                                                                                         | 2           | 3           | 41                   | 44          | P1.1/T2EX/CC1 | compare/capture Channel 1                                     |                                                                                                                           |  |
| 4         5         43         40         P1.3/1XD0/CC2         10         receive clock in mode 0 & Timer 2 compare/capture Channel 2           5         6         44         47         P1.4/SS/CC3         1/0         Bit 4 of port 1 & SPI interface Slave Select pin & Timer 2 compare/capture Channel 3           6         7         1         2         P1.5/MOSI         1/0         Bit 3 of port 5           6         7         1         2         P1.5/MOSI         1/0         Bit 5 of port 1 & SPI interface Serial Data Master Output or Slave Input pin           7         8         2         3         P1.6/MISO/         1/0         Bit 6 of port 1 & SPI interface Serial Data Master Output or Slave Input pin           8         9         3         4         P1.7/SPI_CLK/         1/0         Bit 7 of port 1 & SPI interface Clock pin & IIC SDA pin           9         10         4         5         RESET/(default)/P         1/0         Reset pin(default) & Bit 7 of port 4           10         11         5         6         P3.0/RXD0         1/0         Bit 3 of port 3 & Serial Interface Clock pin           11         13         7         8         P3.1/TXD0         1/0         Bit 1 of port 3 & Serial Interface Clock pin           11         13         7 <td< td=""><td>3</td><td>4</td><td>42</td><td>45</td><td>P1.2/RXD0</td><td colspan="2">I/O Bit 2 of port 1 &amp; Serial interface channel 0 receive data</td></td<> | 3           | 4           | 42                   | 45          | P1.2/RXD0     | I/O Bit 2 of port 1 & Serial interface channel 0 receive data |                                                                                                                           |  |
| 5         6         44         47         P1.4/SS/CG         I/O         compare/capture Channel 3           -         48         P5.2         I/O         Bit 2 of port 5           6         7         1         2         P1.5/MOSI         I/O         Bit 3 of port 5           6         7         1         2         P1.5/MOSI         I/O         Bit 5 of port 1 & SPI interface Serial Data Master Output or Slave Input pin           7         8         2         3         P1.6/MISO/<br>IIC_SCL         I/O         Bit 6 of port 1 & SPI interface Serial Data Master Output or Slave Input pin           9         10         4         5         RESET(default)/P         I/O         Bit 0 of port 3 & Serial interface Clock pin & IIC SDA pin           10         11         5         6         P3.0/RXD0         I/O         Bit 3 of port 4 & PWM Channel 3 & Timer 2 compare/capture Channel 3 & SPI interface Clock pin           11         13         7         8         P3.3/ITXD0         I/O         Bit 3 of port 3 & Serial interface Clock pin           11         13         7         8         P3.1/TXD0         I/O         Bit 1 of port 3 & Serial interface Clock pin           12         14         8         9         P3.2/#INT0         I/O         Bit 1 of port 3                                                                                                                                                                    | 4           | 5           | 43                   | 46          | P1.3/TXD0/CC2 | I/O                                                           | Bit 3 of port 1 & Serial interface channel 0 transmit data or receive clock in mode 0 & Timer 2 compare/capture Channel 2 |  |
| 1         P5.3         I/O         Bit 3 of port 5           6         7         1         2         P1.5/MOSI         I/O         Bit 5 of port 1 & SPI interface Serial Data Master Output or Slave Input pin           7         8         2         3         P1.6/MISO/<br>IIC_SCL         I/O         Bit 6 of port 1 & SPI interface Serial Data Master Input or Slave<br>Output pin & IIC_SCL pin           8         9         3         4         P1.7/SPI_CLK/<br>IIC_SDA         I/O         Bit 7 of port 1 & SPI interface Clock pin & IIC_SDA pin           9         10         4         5         RESET(default)/P<br>4.7         I/O         Bit 0 of port 3 & Serial interface channel 0 receive/transmit<br>data           10         11         5         6         P3.0/RXD0         I/O         Bit 3 of port 4 & PWM Channel 3 & Timer 2 compare/capture<br>Channel 3 & SPI interface Clock pin           11         13         7         8         P3.1/TXD0         I/O         Bit 3 of port 3 & Serial interface channel 0 transmit data or<br>receive clock in mode 0           12         14         8         9         P3.2/#INT0         I/O         Bit 3 of port 3 & External interrupt 0           13         15         9         10         P3.3/#INT1         I/O         Bit 4 of port 3 & External input           14         16         11                                                                                                    | 5           | 6           | 44                   | 47          | P1.4/SS/CC3   | I/O                                                           |                                                                                                                           |  |
| 6         7         1         2         P1.5/MOSI         I/O         Bit 5 of port 1 & SPI interface Serial Data Master Output or<br>Slave Input pin           7         8         2         3         P1.6/MISO/<br>IIC_SCL         I/O         Bit 6 of port 1 & SPI interface Serial Data Master Input or Slave<br>Output pin & IIC_SCL pin           8         9         3         4         P1.7/SPI_CLK/<br>IIC_SDA         I/O         Bit 7 of port 1 & SPI interface Clock pin & IIC_SDA pin           9         10         4         5         RESET(default)/P<br>4.7         I/O         Reset pin(default) & Bit 7 of port 4           10         11         5         6         P3.0/RXD0         I/O         Bit 3 of port 4 & PWM Channel 3 & Timer 2 compare/capture<br>Channel 3 & SPI interface Clock pin           11         13         7         8         P3.1/TXD0         I/O         Bit 1 of port 3 & Serial interface channel 0 transmit data or<br>receive clock in mode 0           12         14         8         9         P3.2/#INT0         I/O         Bit 3 of port 3 & External interrupt 0           13         15         9         10         P3.3/#INT1         I/O         Bit 4 of port 3 & External input           16         18         12         13         P3.6/#WR         I/O         Bit 5 of port 3 & External input                                                                                                              |             |             |                      | 48          | P5.2          | I/O                                                           | Bit 2 of port 5                                                                                                           |  |
| o         1         2         P1.6/MISO/<br>IIC SCL         I/O         Slave Input pin<br>Bit 6 of port 1 & SPI interface Serial Data Master Input or Slave<br>Output pin & IIC SCL pin           8         9         3         4         P1.6/MISO/<br>IIC SCL         I/O         Bit 6 of port 1 & SPI interface Clock pin & IIC SDA pin           9         10         4         5         RESET(default)/P<br>4.7         I/O         Rest pin(default) & Bit 7 of port 4           10         11         5         6         P3.0/RXD0         I/O         Bit 0 of port 3 & Serial interface channel 0 receive/transmit<br>data           12         6         7         P4.3/PWM3/CC3/<br>SPI_CLK         I/O         Bit 3 of port 4 & PWM Channel 3 & Timer 2 compare/capture<br>Channel 3 & SPI interface Clock pin           11         13         7         8         P3.1/TXD0         I/O         Bit 1 of port 3 & Serial interface channel 0 transmit data or<br>receive clock in mode 0           12         14         8         9         P3.2/#INT0         I/O         Bit 3 of port 3 & External interrupt 0           13         15         9         10         P3.4/#INT1         I/O         Bit 3 of port 3 & External interrupt 1           14         16         10         11         P3.4/T0         I/O         Bit 4 of port 3 & External interrupt 1           1                                                                                     |             |             |                      | 1           | P5.3          | I/O                                                           | Bit 3 of port 5                                                                                                           |  |
| 1         0         2         3         IIC_SCL         IIO         Output pin & IIC SCL pin           8         9         3         4         P1.7/SPI_CLK/<br>IIC_SDA         I/O         Bit 7 of port 1 & SPI interface Clock pin & IIC SDA pin           9         10         4         5         RESET(default)/P<br>4.7         I/O         Reset pin(default) & Bit 7 of port 4           10         11         5         6         P3.0/RXD0         I/O         Bit 0 of port 3 & Serial interface channel 0 receive/transmit<br>data           11         13         7         8         P3.1/TXD0         I/O         Bit 1 of port 3 & Serial interface channel 0 transmit data or<br>receive clock in mode 0           12         14         8         9         P3.2/#INT0         I/O         Bit 2 of port 3 & External interrupt 0           13         15         9         10         P3.3/#INT1         I/O         Bit 3 of port 3 & External interrupt 1           14         16         10         11         P3.4/FNT1         I/O         Bit 6 of port 3 & External input           15         17         11         12         P3.5/T1         I/O         Bit 6 of port 3 & External input           16         18         12         13         P3.6#WR         I/O         Bit                                                                                                                                                                            | 6           | 7           | 1                    | 2           | P1.5/MOSI     | I/O                                                           | Slave Input pin                                                                                                           |  |
| 8         9         3         4         IIC_SDA <sup>-</sup> IIO         Bit 7 of port 1 & SPI interface Clock pint a lic SDA pint           9         10         4         5         RESET(default)/P<br>4.7         I/O         Reset pin(default) & Bit 7 of port 4           10         11         5         6         P3.0/RXD0         I/O         Bit 3 of port 3 & Serial interface channel 0 receive/transmit<br>data           11         13         7         8         P3.1/TXD0         I/O         Bit 1 of port 3 & Serial interface channel 0 transmit data or<br>receive clock in mode 0           12         14         8         9         P3.2/#INT0         I/O         Bit 3 of port 3 & Serial interface channel 0 transmit data or<br>receive clock in mode 0           12         14         8         9         P3.2/#INT0         I/O         Bit 3 of port 3 & External interrupt 0           13         15         9         10         P3.3/#INT1         I/O         Bit 3 of port 3 & External interrupt 1           14         16         10         11         P3.4/T0         I/O         Bit 6 of port 3 & External interrupt 1           14         16         10         11         P3.7/#RD         I/O         Bit 6 of port 3 & external memory read signal           17         19         13                                                                                                                                                  | 7           | 8           | 2                    | 3           |               | I/O                                                           |                                                                                                                           |  |
| 9         10         4         5         4.7         10         Reset pin(default) & Bit 7 of port 4           10         11         5         6         P3.0/RXD0         1/0         Bit 0 of port 3 & Serial interface channel 0 receive/transmit data           12         6         7         P4.3/PWM3/CC3/<br>SPI_CLK         1/0         Bit 1 of port 3 & Serial interface clock pin           11         13         7         8         P3.1/TXD0         1/0         Bit 1 of port 3 & Serial interface channel 0 transmit data or receive clock in mode 0           12         14         8         9         P3.2/#INT0         1/0         Bit 2 of port 3 & External interrupt 0           13         15         9         10         P3.3/#INT1         1/0         Bit 4 of port 3 & Timer 0 external input           14         16         10         11         P3.6/#WR         1/0         Bit 6 of port 3 & Timer 1 external input           15         17         11         12         P3.6/#WR         1/0         Bit 6 of port 3 & external memory write signal           17         19         13         14         P3.7/#RD         1/0         Bit 6 of port 5 & Oscillator input           20         22         16         17         VSS         1         Crystal input &                                                                                                                                                                             | 8           | 9           | 3                    | 4           | IIC_SDA       | I/O                                                           | Bit 7 of port 1 & SPI interface Clock pin & IIC SDA pin                                                                   |  |
| 10         11         3         6         P3.0/RAD0         I/O         data           12         6         7         P4.3/PWM3/CC3/<br>SPI_CLK         I/O         Bit 3 of port 4 & PWM Channel 3 & Timer 2 compare/capture<br>Channel 3 & SPI interface Clock pin           11         13         7         8         P3.1/TXD0         I/O         Bit 1 of port 3 & Serial interface channel 0 transmit data or<br>receive clock in mode 0           12         14         8         9         P3.2/#INT0         I/O         Bit 2 of port 3 & External interrupt 0           13         15         9         10         P3.3/#INT1         I/O         Bit 3 of port 3 & External interrupt 1           14         16         10         11         P3.4/T0         I/O         Bit 4 of port 3 & External interrupt 1           15         17         11         12         P3.5/T1         I/O         Bit 5 of port 3 & External input           16         18         12         13         P3.6/#WR         I/O         Bit 7 of port 3 & external memory write signal           17         19         13         14         P3.7/#RD         I/O         Bit 7 of port 3 & external memory read signal           18         20         14         15         XTAL1/P5.5/         O         Crystal inp                                                                                                                                                                      | 9           | 10          | 4                    | 5           | . ,           | I/O                                                           | Reset pin(default) & Bit 7 of port 4                                                                                      |  |
| 12         6         7         P4.3/PWIN3/CC3/<br>SPI_CLK         I/O         Channel 3 & SPI interface Clock pin           11         13         7         8         P3.1/TXD0         I/O         Bit 1 of port 3 & Serial interface channel 0 transmit data or receive clock in mode 0           12         14         8         9         P3.2/#INT0         I/O         Bit 2 of port 3 & External interrupt 0           13         15         9         10         P3.3/#INT1         I/O         Bit 3 of port 3 & External interrupt 1           14         16         10         11         P3.4/T0         I/O         Bit 4 of port 3 & External interrupt 1           14         16         10         11         P3.4/T0         I/O         Bit 5 of port 3 & External interrupt 1           15         17         11         12         P3.5/T1         I/O         Bit 6 of port 3 & external memory write signal           17         19         13         14         P3.7/#RD         I/O         Bit 7 of port 3 & external memory read signal           18         20         14         15         XTAL1/P5.5/         O         Crystal input & bit4 of port 5           19         21         15         16         XTAL1/P5.5/         O         Crystal input & bit5 of port 5 & Os                                                                                                                                                                            | 10          | 11          | 5                    | 6           | P3.0/RXD0     | I/O                                                           |                                                                                                                           |  |
| 11         13         7         8         P3.//TXD0         I/O         receive clock in mode 0           12         14         8         9         P3.2/#INT0         I/O         Bit 2 of port 3 & External interrupt 0           13         15         9         10         P3.3/#INT1         I/O         Bit 3 of port 3 & External interrupt 1           14         16         10         11         P3.4/T0         I/O         Bit 4 of port 3 & External interrupt 1           15         17         11         12         P3.5/T1         I/O         Bit 6 of port 3 & External memory write signal           16         18         12         13         P3.6/#WR         I/O         Bit 6 of port 3 & external memory write signal           17         19         13         14         P3.7/#RD         I/O         Bit 7 of port 3 & external memory write signal           18         20         14         15         XTAL1/P5.5/         O         Crystal output & bit5 of port 5 & Oscillator input           20         22         16         17         VSS         I         Power supply           23         17         18         P4.0/PWM0/CCO/<br>IIC_SCL/SS         I/O         Bit 0 of port 2 & Bit 8 of external memory address & Timer 2<br>compare/capture Channel 0                                                                                                                                                                                 |             | 12          | 6                    | 7           |               | I/O                                                           |                                                                                                                           |  |
| 12       14       8       9       P3.2/#INT0       I/O       Bit 2 of port 3 & External interrupt 0         13       15       9       10       P3.3/#INT1       I/O       Bit 3 of port 3 & External interrupt 1         14       16       10       11       P3.4/T0       I/O       Bit 4 of port 3 & Timer 0 external input         15       17       11       12       P3.5/T1       I/O       Bit 5 of port 3 & External memory external input         16       18       12       13       P3.6/#WR       I/O       Bit 6 of port 3 & external memory write signal         17       19       13       14       P3.7/#RD       I/O       Bit 7 of port 3 & external memory read signal         18       20       14       15       XTAL2/P5.4       O       Crystal output & bit4 of port 5         19       21       15       16       XTAL1/P5.5/<br>OSC_IN       I       Crystal input & bit5 of port 5 & Oscillator input         20       22       16       17       VSS       I       Power supply         21       24       18       19       P2.0 /A8/CC0       I/O       Bit 0 of port 2 & Bit 8 of external memory address & Timer 2 compare/capture Channel 0         22       25       19       20       P2.1/A                                                                                                                                                                                                                                                           | 11          | 13          | 7                    | 8           | P3.1/TXD0     | I/O                                                           |                                                                                                                           |  |
| 14         16         10         11         P3.4/T0         I/O         Bit 4 of port 3 & Timer 0 external input           15         17         11         12         P3.5/T1         I/O         Bit 5 of port 3 & Timer 1 external input           16         18         12         13         P3.6/#WR         I/O         Bit 6 of port 3 & external memory write signal           17         19         13         14         P3.7/#RD         I/O         Bit 7 of port 3 & external memory read signal           18         20         14         15         XTAL2/P5.4         O         Crystal output & bit4 of port 5           19         21         15         16         XTAL1/P5.5/<br>OSC_IN         I         Crystal input & bit5 of port 5 & Oscillator input           20         22         16         17         VSS         I         Power supply           23         17         18         P4.0/PWM0/CC0/<br>IIC_SCL/SS         I/O         Bit 0 of port 4 & PWM Channel 0 & Timer 2 compare/capture<br>Channel 0 & IIC SCL pin & SPI interface Slave Select pin           21         24         18         19         P2.0 /A8/CC0         I/O         Bit 0 of port 2 & Bit 8 of external memory address & Timer 2<br>compare/capture Channel 0           22         25         19         20         P2.1                                                                                                                                                 | 12          | 14          | 8                    | 9           | P3.2/#INT0    | I/O                                                           |                                                                                                                           |  |
| 15       17       11       12       P3.5/T1       I/O       Bit 5 of port 3 & Timer 1 external input         16       18       12       13       P3.6/#WR       I/O       Bit 6 of port 3 & external memory write signal         17       19       13       14       P3.7/#RD       I/O       Bit 7 of port 3 & external memory write signal         18       20       14       15       XTAL2/P5.4       O       Crystal output & bit4 of port 5         19       21       15       16       XTAL1/P5.5/<br>OSC_IN       I       Crystal input & bit5 of port 5 & Oscillator input         20       22       16       17       VSS       I       Power supply         23       17       18       P4.0/PWM0/CC0/<br>IIC_SCL/SS       I/O       Bit 0 of port 4 & PWM Channel 0 & Timer 2 compare/capture<br>Channel 0 & IIC SCL pin & SPI interface Slave Select pin         21       24       18       19       P2.0 /A8/CC0       I/O       Bit 0 of port 2 & Bit 8 of external memory address & Timer 2<br>compare/capture Channel 0         22       25       19       20       P2.1 /A9/CC1       I/O       Bit 2 of port 2 & Bit 9 of external memory address & Timer 2<br>compare/capture Channel 1         23       26       20       21       P2.2/A10/CC2       I/O       Bit 2 of port 2 & Bit 10 of e                                                                                                                                                                        | 13          | 15          | 9                    | 10          | P3.3/#INT1    | I/O                                                           | Bit 3 of port 3 & External interrupt 1                                                                                    |  |
| 16         18         12         13         P3.6/#WR         I/O         Bit 6 of port 3 & external memory write signal           17         19         13         14         P3.7/#RD         I/O         Bit 7 of port 3 & external memory read signal           18         20         14         15         XTAL2/P5.4         O         Crystal output & bit4 of port 5           19         21         15         16         XTAL1/P5.5/<br>OSC_IN         I         Crystal input & bit5 of port 5 & Oscillator input           20         22         16         17         VSS         I         Power supply           23         17         18         P4.0/PWM0/CC0/<br>IIC_SCL/SS         I/O         Bit 0 of port 4 & PWM Channel 0 & Timer 2 compare/capture<br>Channel 0 & IIC SCL pin & SPI interface Slave Select pin           21         24         18         19         P2.0 /A8/CC0         I/O         Bit 0 of port 2 & Bit 8 of external memory address & Timer 2<br>compare/capture Channel 0           22         25         19         20         P2.1 /A9/CC1         I/O         Bit 1 of port 2 & Bit 9 of external memory address & Timer 2<br>compare/capture Channel 1           23         26         20         21         P2.2/A10/CC2         I/O         Bit 2 of port 2 & Bit 10 of external memory address & Timer 2<br>compare/capture Channel 2                                                                                               |             |             | 10                   |             | P3.4/T0       | I/O                                                           | Bit 4 of port 3 & Timer 0 external input                                                                                  |  |
| 17       19       13       14       P3.7/#RD       I/O       Bit 7 of port 3 & external memory read signal         18       20       14       15       XTAL2/P5.4       O       Crystal output & bit4 of port 5         19       21       15       16       XTAL1/P5.5/<br>OSC_IN       I       Crystal input & bit5 of port 5 & Oscillator input         20       22       16       17       VSS       I       Power supply         23       17       18       P4.0/PWM0/CC0/<br>IIC_SCL/SS       I/O       Bit 0 of port 4 & PWM Channel 0 & Timer 2 compare/capture<br>Channel 0 & IIC SCL pin & SPI interface Slave Select pin         21       24       18       19       P2.0 /A8/CC0       I/O         22       25       19       20       P2.1 /A9/CC1       I/O         23       26       20       21       P2.2/A10/CC2       I/O         24       27       21       22       P2.3/A11/CC3       I/O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |             | 17          | 11                   | 12          | P3.5/T1       | I/O                                                           | Bit 5 of port 3 & Timer 1 external input                                                                                  |  |
| 18201415XTAL2/P5.4OCrystal output & bit4 of port 519211516XTAL1/P5.5/<br>OSC_INICrystal input & bit5 of port 5 & Oscillator input20221617VSSIPower supply231718P4.0/PWM0/CC0/<br>IIC_SCL/SSI/OBit 0 of port 4 & PWM Channel 0 & Timer 2 compare/capture<br>Channel 0 & IIC SCL pin & SPI interface Slave Select pin21241819P2.0 /A8/CC0I/OBit 0 of port 2 & Bit 8 of external memory address & Timer 2<br>compare/capture Channel 022251920P2.1 /A9/CC1I/OBit 1 of port 2 & Bit 9 of external memory address & Timer 2<br>compare/capture Channel 123262021P2.2/A10/CC2I/OBit 2 of port 2 & Bit 10 of external memory address & Timer 2<br>compare/capture Channel 224272122P2.3/A11/CC3I/OBit 3 of port 2 & Bit 11 of external memory address & Timer 2<br>compare/capture Channel 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |             |             |                      |             | P3.6/#WR      | I/O                                                           | Bit 6 of port 3 & external memory write signal                                                                            |  |
| 19211516XTAL1/P5.5/<br>OSC_INICrystal input & bit5 of port 5 & Oscillator input20221617VSSIPower supply231718P4.0/PWM0/CC0/<br>IIC_SCL/SSI/OBit 0 of port 4 & PWM Channel 0 & Timer 2 compare/capture<br>Channel 0 & IIC SCL pin & SPI interface Slave Select pin21241819P2.0 /A8/CC0I/OBit 0 of port 2 & Bit 8 of external memory address & Timer 2<br>compare/capture Channel 022251920P2.1 /A9/CC1I/OBit 1 of port 2 & Bit 9 of external memory address & Timer 2<br>compare/capture Channel 123262021P2.2/A10/CC2I/OBit 2 of port 2 & Bit 10 of external memory address & Timer 2<br>compare/capture Channel 124272122P2.3/A11/CC3I/OBit 3 of port 2 & Bit 11 of external memory address & Timer 2<br>compare/capture Channel 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |             |             |                      |             | P3.7/#RD      | I/O                                                           | Bit 7 of port 3 & external memory read signal                                                                             |  |
| 19211516OSC_IN1Crystal input & bits of port 5 & Oscillator input20221617VSSIPower supply231718P4.0/PWM0/CC0/<br>IIC_SCL/SSI/OBit 0 of port 4 & PWM Channel 0 & Timer 2 compare/capture<br>Channel 0 & IIC SCL pin & SPI interface Slave Select pin21241819P2.0 /A8/CC0I/OBit 0 of port 2 & Bit 8 of external memory address & Timer 2<br>compare/capture Channel 022251920P2.1 /A9/CC1I/OBit 1 of port 2 & Bit 9 of external memory address & Timer 2<br>compare/capture Channel 123262021P2.2/A10/CC2I/OBit 2 of port 2 & Bit 10 of external memory address & Timer 2<br>compare/capture Channel 224272122P2.3/A11/CC3I/OBit 3 of port 2 & Bit 11 of external memory address & Timer 224272122P2.3/A11/CC3I/OBit 3 of port 2 & Bit 11 of external memory address & Timer 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 18          | 20          | 14                   | 15          |               | 0                                                             | Crystal output & bit4 of port 5                                                                                           |  |
| 231718P4.0/PWM0/CC0/<br>IIC_SCL/SSI/OBit 0 of port 4 & PWM Channel 0 & Timer 2 compare/capture<br>Channel 0 & IIC SCL pin & SPI interface Slave Select pin21241819P2.0 /A8/CC0I/OBit 0 of port 2 & Bit 8 of external memory address & Timer 2<br>compare/capture Channel 022251920P2.1 /A9/CC1I/OBit 1 of port 2 & Bit 9 of external memory address & Timer 2<br>compare/capture Channel 123262021P2.2/A10/CC2I/OBit 2 of port 2 & Bit 10 of external memory address & Timer 2<br>compare/capture Channel 124272122P2.3/A11/CC3I/OBit 3 of port 2 & Bit 11 of external memory address & Timer 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 19          | 21          | 15                   |             | OSC_IN        | Ι                                                             | Crystal input & bit5 of port 5 & Oscillator input                                                                         |  |
| 23       17       18       IIC_SCL/SS       I/O       Channel 0 & IIC SCL pin & SPI interface Slave Select pin         21       24       18       19       P2.0 /A8/CC0       I/O       Bit 0 of port 2 & Bit 8 of external memory address & Timer 2 compare/capture Channel 0         22       25       19       20       P2.1 /A9/CC1       I/O       Bit 1 of port 2 & Bit 9 of external memory address & Timer 2 compare/capture Channel 1         23       26       20       21       P2.2/A10/CC2       I/O       Bit 2 of port 2 & Bit 10 of external memory address & Timer 2 compare/capture Channel 2         24       27       21       22       P2.3/A11/CC3       I/O       Bit 3 of port 2 & Bit 11 of external memory address & Timer 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 20          | 22          | 16                   | 17          |               |                                                               |                                                                                                                           |  |
| 21241819P2.0 /A8/CC0I/OBit 0 of port 2 & Bit 8 of external memory address & Timer 2<br>compare/capture Channel 022251920P2.1 /A9/CC1I/OBit 1 of port 2 & Bit 9 of external memory address & Timer 2<br>compare/capture Channel 123262021P2.2/A10/CC2I/OBit 2 of port 2 & Bit 10 of external memory address & Timer 2<br>compare/capture Channel 124272122P2.3/A11/CC3I/OBit 3 of port 2 & Bit 11 of external memory address & Timer 2<br>compare/capture Channel 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |             | 23          | 17                   | 18          |               | I/O                                                           | Bit 0 of port 4 & PWM Channel 0 & Timer 2 compare/capture                                                                 |  |
| 22       25       19       20       P2.1 /A9/CC1       I/O       Bit 1 of port 2 & Bit 9 of external memory address & Timer 2 compare/capture Channel 1         23       26       20       21       P2.2/A10/CC2       I/O       Bit 2 of port 2 & Bit 10 of external memory address & Timer 2 compare/capture Channel 1         24       27       21       22       P2.3/A11/CC3       I/O       Bit 3 of port 2 & Bit 11 of external memory address & Timer 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 21          | 24          | 18                   | 19          | P2.0 /A8/CC0  | I/O                                                           | compare/capture Channel 0                                                                                                 |  |
| 23     26     20     21     P2.2/A10/CC2     I/O     Bit 2 of port 2 & Bit 10 of external memory address & Timer 2 compare/capture Channel 2       24     27     21     22     P2.3/A11/CC3     I/O     Bit 3 of port 2 & Bit 11 of external memory address & Timer 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 22          | 25          | 19                   | 20          | P2.1 /A9/CC1  | I/O                                                           | Bit 1 of port 2 & Bit 9 of external memory address & Timer 2                                                              |  |
| 24 27 21 22 P2 3/A11/CC3 I/O Bit 3 of port 2 & Bit 11 of external memory address & Timer 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 23          | 26          | 20                   | 21          | P2.2/A10/CC2  | I/O                                                           | Bit 2 of port 2 & Bit 10 of external memory address & Timer 2                                                             |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 24          | 27          | 21                   | 22          | P2.3/A11/CC3  | I/O                                                           | Bit 3 of port 2 & Bit 11 of external memory address & Timer 2                                                             |  |



#### SM59R16G6/SM59R09G6/SM59R05G6 8-Bit Micro-controller 64KB/36KB/20KB with ISP Flash & 1KB RAM embedded

| 40L<br>PDIP | 44L<br>PLCC | 44L<br>PQFP/<br>LQFP | 48L<br>LQFP | Symbol                                                                | I/O                                                                                               | Description                                                                                                                                          |  |  |
|-------------|-------------|----------------------|-------------|-----------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| 25          | 28          | 22                   | 23          | P2.4/A12/PWM0                                                         | 2.4/A12/PWM0 I/O Bit 4 of port 2 & Bit 12 of external memory address & PWM<br>Channel 0           |                                                                                                                                                      |  |  |
|             |             |                      | 24          | P5.0                                                                  | I/O                                                                                               | Bit 0 of port 5                                                                                                                                      |  |  |
|             |             |                      | 25          | P5.1                                                                  | 1 I/O Bit 1 of port 5                                                                             |                                                                                                                                                      |  |  |
| 26          | 29          | 23                   | 26          | P2.5/A13/PWM1                                                         | I/O                                                                                               | Bit 5 of port 2 & Bit 13 of external memory address & PWM<br>Channel 1                                                                               |  |  |
| 27          | 30          | 24                   | 27          | P2.6/A14/PWM2                                                         | 6/A14/PWM2 I/O Bit 6 of port 2 & Bit 14 of external memory address & PWM<br>Channel 2             |                                                                                                                                                      |  |  |
| 28          | 31          | 25                   | 28          | P2.7/A15/PWM3                                                         | 22.7/A15/PWM3 I/O Bit 7 of port 2 & Bit 15 of external memory address & PWM Channel 3             |                                                                                                                                                      |  |  |
| 29          | 32          | 26                   | 29          | OCI_SCL/P4.4                                                          | OCI_SCL/P4.4 I/O On-Chip Instrumentation Clock I/O pin of ICE and ICP functions & Bit 4 of port 4 |                                                                                                                                                      |  |  |
| 30          | 33          | 27                   | 30          | ALE/P4.5                                                              | I/O                                                                                               | Address latch enable & Bit 5 of port 4                                                                                                               |  |  |
|             | 34          | 28                   | 31          | P4.1/PWM1/CC1/<br>IIC_SDA/MOSI                                        | I/O                                                                                               | Bit 1 of port 4 & PWM Channel 1 & Timer 2 compare/capture<br>Channel 1 & IIC SDA pin & SPI interface Serial Data Master<br>Output or Slave Input pin |  |  |
| 31          | 35          | 29                   | 32          | OCI_SDA/P4.6                                                          | I/O                                                                                               | On-Chip Instrumentation Command and data I/O pin<br>synchronous to OCI_SCL in ICE and ICP functions & Bit 6 of<br>port 4                             |  |  |
| 32          | 36          | 30                   | 33          | P0.7/AD7                                                              | I/O                                                                                               | Bit 7 of port 0 & Bit 7 of external memory address/ data                                                                                             |  |  |
| 33          | 37          | 31                   | 34          | P0.6/AD6                                                              | 6 I/O Bit 6 of port 0 & Bit 6 of external memory address/ data                                    |                                                                                                                                                      |  |  |
| 34          | 38          | 32                   | 35          | P0.5/AD5                                                              | P0.5/AD5 I/O Bit 5 of port 0 & Bit 5 of external memory address/ data                             |                                                                                                                                                      |  |  |
| 35          | 39          | 33                   | 36          | P0.4/AD4 I/O Bit 4 of port 0 & Bit 4 of external memory address/ data |                                                                                                   |                                                                                                                                                      |  |  |
| 36          | 40          | 34                   | 37          | P0.3/AD3 I/O Bit 3 of port 0 & Bit 3 of external memory address/ data |                                                                                                   |                                                                                                                                                      |  |  |
| 37          | 41          | 35                   | 38          | P0.2/AD2                                                              |                                                                                                   |                                                                                                                                                      |  |  |
| 38          | 42          | 36                   | 39          | P0.1/AD1                                                              | I/O                                                                                               |                                                                                                                                                      |  |  |
| 39          | 43          | 37                   | 40          | P0.0/AD0                                                              | I/O                                                                                               | Bit 0 of port 0 & Bit 0 of external memory address/ data                                                                                             |  |  |
| 40          | 44          | 38                   | 41          | VDD                                                                   |                                                                                                   | Power supply                                                                                                                                         |  |  |



# **Special Function Register (SFR)**

| A map of the Special Function Registers is | shown as below: |
|--------------------------------------------|-----------------|
|--------------------------------------------|-----------------|

| Hex\Bin | X000  | X001   | X010   | X011   | X100   | X101   | X110   | X111   | Bin/Hex |
|---------|-------|--------|--------|--------|--------|--------|--------|--------|---------|
| F8      | IICS  | IICCTL | IICA1  | IICA2  | IICRWD | IICS2  |        |        | FF      |
| F0      | В     | SPIC1  | SPIC2  | SPITXD | SPIRXD | SPIS   |        | TAKEY  | F7      |
| E8      | P4    |        |        |        |        |        |        |        | EF      |
| E0      | ACC   | ISPFAH | ISPFAL | ISPFD  | ISPFC  | ISPST  | LVC    | SWRES  | E7      |
| D8      | P5    | PFCON  | P3M0   | P3M1   | P4M0   | P4M1   | P5M0   | P5M1   | DF      |
| D0      | PSW   | CCEN2  | P0M0   | P0M1   | P1M0   | P1M1   | P2M0   | P2M1   | D7      |
| C8      | T2CON | CCCON  | CRCL   | CRCH   | TL2    | TH2    | PWMMDH | PWMMDL | CF      |
| C0      | IRCON | CCEN   | CCL1   | CCH1   | CCL2   | CCH2   | CCL3   | CCH3   | C7      |
| B8      | IEN1  | IP1    | S0RELH |        | PWMD0H | PWMD0L | PWMD1H | PWMD1L | BF      |
| B0      | P3    | PWMD2H | PWMD2L | PWMD3H | PWMD3L | PWMC   | WDTC   | WDTK   | B7      |
| A8      | IEN0  | IP0    | S0RELL |        |        |        |        |        | AF      |
| A0      | P2    | RSTS   |        |        |        |        |        |        | A7      |
| 98      | S0CON | S0BUF  |        |        |        |        |        |        | 9F      |
| 90      | P1    | AUX    | AUX2   |        |        |        |        |        | 97      |
| 88      | TCON  | TMOD   | TL0    | TL1    | TH0    | TH1    |        | IFCON  | 8F      |
| 80      | P0    | SP     | DPL    | DPH    | DPL1   | DPH1   | RCON   | PCON   | 87      |
| Hex\Bin | X000  | X001   | X010   | X011   | X100   | X101   | X110   | X111   | Bin/Hex |

Note: Special Function Registers reset values and description for SM59R16G6

| Register | Location | Reset value | Description                   |  |
|----------|----------|-------------|-------------------------------|--|
| P0       | 80H      | FFH         | Port 0                        |  |
| SP       | 81H      | 07H         | Stack Pointer                 |  |
| DPL      | 82H      | 00H         | Data Pointer 0 low byte       |  |
| DPH      | 83H      | 00H         | Data Pointer 0 high byte      |  |
| DPL1     | 84H      | 00H         | Data Pointer 1 low byte       |  |
| DPH1     | 85H      | 00H         | Data Pointer 1 high byte      |  |
| RCON     | 86H      | 00H         | Internal RAM control register |  |
| PCON     | 87H      | 40H         | Power Control                 |  |
| TCON     | 88H      | 00H         | Timer/Counter Control         |  |
| TMOD     | 89H      | 00H         | Timer Mode Control            |  |
| TL0      | 8AH      | 00H         | Timer 0, low byte             |  |
| TL1      | 8BH      | 00H         | Timer 1, low byte             |  |
| TH0      | 8CH      | 00H         | Timer 0, high byte            |  |
| TH1      | 8DH      | 00H         | Timer 1, high byte            |  |
| IFCON    | 8FH      | 00H         | Interface control register    |  |
| P1       | 90H      | FFH         | Port 1                        |  |
| AUX      | 91H      | 00H         | Auxiliary register            |  |

Specifications subject to change without notice contact your sales representatives for the most recent information. ISSFD-M059 11 Ver.G SM59R16G6 02/2012



| Register | Location | Reset value | Description                                |  |
|----------|----------|-------------|--------------------------------------------|--|
| AUX2     | 92H      | 00H         | Auxiliary register 2                       |  |
| SOCON    | 98H      | 00H         | Serial Port 0, Control Register            |  |
| SOBUF    | 99H      | 00H         | Serial Port 0, Data Buffer                 |  |
| P2       | A0H      | FFH         | Port 2                                     |  |
| RSTS     | A1H      | 00H         | Reset Status Flag Register                 |  |
| IEN0     | A8H      | 00H         | Interrupt Enable Register 0                |  |
| IP0      | A9H      | 00H         | Interrupt Priority Register 0              |  |
| SORELL   | AAH      | 00H         | Serial Port 0, Reload Register, low byte   |  |
| P3       | B0H      | FFH         | Port 3                                     |  |
| PWMD2H   | B1H      | 00H         | PWM channel 2 data high byte               |  |
| PWMD2L   | B2H      | 00H         | PWM channel 2 data low byte                |  |
| PWMD3H   | B3H      | 00H         | PWM channel 3 data high byte               |  |
| PWMD3L   | B4H      | 00H         | PWM channel 3 data low byte                |  |
| PWMC     | B5H      | 00H         | PWM control register                       |  |
| WDTC     | B6H      | 04H         | Watchdog timer control register            |  |
| WDTK     | B7H      | 00H         | Watchdog timer refresh key.                |  |
| IEN1     | B8H      | 00H         | Interrupt Enable Register 1                |  |
| IP1      | B9H      | 00H         | Interrupt Priority Register 1              |  |
| SORELH   | BAH      | 00H         | Serial Port 0, Reload Register, high byte  |  |
| PWMD0H   | BCH      | 00H         | PWM channel 0 data high byte               |  |
| PWMD0L   | BDH      | 00H         | PWM channel 0 data low byte                |  |
| PWMD1H   | BEH      | 00H         | PWM channel 1 data high byte               |  |
| PWMD1L   | BFH      | 00H         | PWM channel 1 data low byte                |  |
| IRCON    | C0H      | 00H         | Interrupt Request Control Register         |  |
| CCEN     | C1H      | 00H         | Compare/Capture Enable Register            |  |
| CCL1     | C2H      | 00H         | Compare/Capture Register 1, low byte       |  |
| CCH1     | C3H      | 00H         | Compare/Capture Register 1, high byte      |  |
| CCL2     | C4H      | 00H         | Compare/Capture Register 2, low byte       |  |
| CCH2     | C5H      | 00H         | Compare/Capture Register 2, HigH byte      |  |
| CCL3     | C6H      | 00H         | Compare/Capture Register 3, low byte       |  |
| CCH3     | C7H      | 00H         | Compare/Capture Register 3, high byte      |  |
| T2CON    | C8H      | 00H         | Timer 2 Control                            |  |
| CCCON    | C9H      | 00H         | Compare/Capture Control                    |  |
| CRCL     | CAH      | 00H         | Compare/Reload/Capture Register, low byte  |  |
| CRCH     | CBH      | 00H         | Compare/Reload/Capture Register, high byte |  |
| TL2      | ССН      | 00H         | Timer 2, low byte                          |  |
| TH2      | CDH      | 00H         | Timer 2, high byte                         |  |
| PWMMDH   | CEH      | 00H         | PWM Max Data Register, high byte.          |  |
| PWMMDL   | CFH      | FFH         | PWM Max Data Register, low byte.           |  |
| PSW      | D0H      | 00H         | Program Status Word                        |  |
| CCEN2    | D1H      | 00H         | Compare/Capture Enable 2 register          |  |
| P0M0     | D2H      | 00H         | Port 0 output mode 0                       |  |

Specifications subject to change without notice contact your sales representatives for the most recent information.ISSFD-M05912Ver.GSM59R16G602/2012



| Register | Location | Reset value | Description                            |  |
|----------|----------|-------------|----------------------------------------|--|
| P0M1     | D3H      | 00H         | Port 0 output mode 1                   |  |
| P1M0     | D4H      | 00H         | Port 1 output mode 0                   |  |
| P1M1     | D5H      | 00H         | Port 1 output mode 1                   |  |
| P2M0     | D6H      | 00H         | Port 2 output mode 0                   |  |
| P2M1     | D7H      | 00H         | Port 2 output mode 1                   |  |
| P5       | D8H      | 3FH         | Port 5                                 |  |
| PFCON    | D9H      | 00H         | Peripheral Frequency control register  |  |
| P3M0     | DAH      | 00H         | Port 3 output mode 0                   |  |
| P3M1     | DBH      | 00H         | Port 3 output mode 1                   |  |
| P4M0     | DCH      | 00H         | Port 4 output mode 0                   |  |
| P4M1     | DDH      | 00H         | Port 4 output mode 1                   |  |
| P5M0     | DEH      | 00H         | Port 5 output mode 0                   |  |
| P5M1     | DFH      | 00H         | Port 5 output mode 1                   |  |
| ACC      | E0H      | 00H         | Accumulator                            |  |
| ISPFAH   | E1H      | FFH         | ISP Flash Address-High register        |  |
| ISPFAL   | E2H      | FFH         | ISP Flash Address-Low register         |  |
| ISPFD    | E3H      | FFH         | ISP Flash Data register                |  |
| ISPFC    | E4H      | 00H         | ISP Flash control register             |  |
| ISPST    | E5H      | 00H         | ISP Flash status                       |  |
| LVC      | E6H      | 20H         | Low voltage control register           |  |
| SWRES    | E7H      | 00H         | Software Reset register                |  |
| P4       | E8H      | FFH         | Port 4                                 |  |
| В        | F0H      | 00H         | B Register                             |  |
| SPIC1    | F1H      | 08H         | SPI control register 1                 |  |
| SPIC2    | F2H      | 00H         | SPI control register 2                 |  |
| SPITXD   | F3H      | 00H         | SPI transmit data buffer               |  |
| SPIRXD   | F4H      | 00H         | SPI receive data buffer                |  |
| SPIS     | F5H      | 40H         | SPI status register                    |  |
| TAKEY    | F7H      | 00H         | Time Access Key register               |  |
| IICS     | F8H      | 00H         | IIC status register                    |  |
| IICCTL   | F9H      | 04H         | IIC control register                   |  |
| IICA1    | FAH      | A0H         | IIC channel 1 Address 1 register       |  |
| IICA2    | FBH      | 60H         | IIC channel 1 Address 2 register       |  |
| IICRWD   | FCH      | 00H         | IIC channel 1 Read / Write Data buffer |  |
| IICS2    | FDH      | 00H         | IIC status2 register                   |  |

Specifications subject to change without notice contact your sales representatives for the most recent information.ISSFD-M05913Ver.GSM59R16G602/2012



### **Function Description**

### 1. General Features

SM59R16G6 is an 8-bit micro-controller All of its functions and the detailed meanings of SFR will be given in the following sections •

#### 1.1. Embedded Flash

The program can be loaded into the embedded 64KB/36KB/20KB Flash memory via its writer or In-System Programming (ISP)  $\circ$  The high-quality Flash has a 100K-write cycle life  $\cdot$  suitable for re-programming and data recording as EEPROM  $\circ$ 

#### 1.2. IO Pads

The SM59R16G6 has six I/O ports: Port 0, Port 1, Port 2, Port 3, Port 4, and Port 5. Ports 0, 1, 2, 3 are 8-bit ports  $\cdot$  Port 4 is a 7-bit port and Port 5 is a 6-bit port. These are: quasi-bidirectional (standard 8051 port outputs), push-pull, open drain, and input-only. As description in section 5  $\circ$ 

The OCI\_SCL \ ALE \ OCI\_SDA and RESET can be define as P4.4 \ P4.5 \ P4.6 and P4.7 by writer or ISP \

The XTAL2 and XTAL1 can define as P5.4 and P5.5 by writer or ISP  $\cdot$  when user use internal OSC as system clock; when user use external OSC as system clock and input into XTAL1  $\cdot$  Only XTAL2 can be defined as P5.4  $\circ$ 

All the pads for P0  $\sim$  P5 are with slew rate to reduce EMI. The other way to reduce EMI is to disable the ALE output if unused. This is selected by its SFR. The IO pads can withstand 4KV ESD in human body mode guaranteeing the SM59R16G6's quality in high electro-static environments.

#### 1.3. 2T/1T Selection

The conventional 52-series MCUs are 12T, i.e., 12 oscillator clocks per machine cycle. SM59R16G6 is a 2T or 1T MCU, i.e., its machine cycle is two-clock or one-clock. In the other words, it can execute one instruction within two clocks or only one clock. The difference between 2T mode and 1T mode are given in the example in Fig. 1-1.



Fig. 1-1(a): The waveform of internal instruction signal in 2T mode

| XTAL1       |             |             |             |             |  |
|-------------|-------------|-------------|-------------|-------------|--|
| Instruction | Instruction | Instruction | Instruction | Instruction |  |

Fig. 1-1(b): The waveform of internal instruction signal in 1T mode

The default is in 2T mode, and it can be changed to 1T mode if IFCON [7] (at address 8Fh) is set to high any time. Not every instruction can be executed with one machine cycle. The exact machine cycle number for all the instructions are given in the next section.



#### 1.4. RESET

#### 1.4.1. Hardware RESET function

SM59R16G6 provides Internal reset circuit inside  $\,^{,}$  the Internal reset time can set by writer or ISP  $\,^{,}$ 

| Internal Reset time |
|---------------------|
| 25ms (default)      |
| 200ms               |
| 100ms               |
| 50ms                |
| 16ms                |
| 8ms                 |
| 4ms                 |

#### 1.4.2. Software RESET function

SM59R16G6 provides one software reset mechanism to reset whole chip. To perform a software reset, the firmware must write three specific values 55H, AAH and 5AH sequentially to the TAKEY register to enable the Software Reset register (SWRES) write attribute. After SWRES register obtain the write authority, the firmware can write FFh to the SWRES register. The hardware will decode a reset signal that "OR" with the other hardware reset. The SWRES register is self-reset at the end of the software reset procedure.

| Mnemonic                | Description                   | Direct | Bit 7 | Bit 6       | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | RESET |
|-------------------------|-------------------------------|--------|-------|-------------|-------|-------|-------|-------|-------|-------|-------|
| Software Reset function |                               |        |       |             |       |       |       |       |       |       |       |
| TAKEY                   | Time Access Key<br>register   | F7H    |       | TAKEY [7:0] |       |       |       |       | 00H   |       |       |
| SWRES                   | Software Reset<br>register    | E7H    |       | SWRES [7:0] |       |       |       |       | 00H   |       |       |
| RSTS                    | Reset Status Flag<br>register | A1h    | -     | -           | -     | PDRF  | WDTF  | SWRF  | LVRF  | PORF  | 00H   |

#### 1.4.3. Time Access Key register (TAKEY)

| Mnemor | nic: TAKE | Ϋ́ |      |         |   |   | Addr | ess: F7H |
|--------|-----------|----|------|---------|---|---|------|----------|
| 7      | 6         | 5  | 4    | 3       | 2 | 1 | 0    | Reset    |
|        |           |    | TAKE | Y [7:0] |   |   |      | 00H      |

Software reset register (SWRES) is read-only by default; software must write three specific values 55H, AAH and 5AH sequentially to the TAKEY register to enable the SWRES register write attribute. That is:

MOV TAKEY, #55H MOV TAKEY, #AAH MOV TAKEY, #5AH

#### 1.4.4. Software Reset register (SWRES)

| Mnemor      | nic: SWRI | ES |   |   |   |   | Addre | ess: E7H |
|-------------|-----------|----|---|---|---|---|-------|----------|
| 7           | 6         | 5  | 4 | 3 | 2 | 1 | 0     | Reset    |
| SWRES [7:0] |           |    |   |   |   |   |       | 00H      |

SWRES [7:0]: Software reset register bit. These 8-bit is self-reset at the end of the reset procedure. SWRES [7:0] = FFH, software reset.

SWRES [7:0] = 00H ~ FEH, MCU no action.



#### 1.4.5. Reset Status Flag (RSTS)

| Mnemonic: RSTS |   |   |   |      |      |      |      | Address: A1H |       |  |
|----------------|---|---|---|------|------|------|------|--------------|-------|--|
|                | 7 | 6 | 5 | 4    | 3    | 2    | 1    | 0            | Reset |  |
|                | - | - | - | PDRF | WDTF | SWRF | LVRF | PORF         | 00H   |  |

PDRF: Pad reset flag.

When MCU is reset by reset pad, PDRF flag will be set to one by hardware. This flag clear by software.

WDTF: Watchdog timer reset flag.

When MCU is reset by watchdog, WDTF flag will be set to one by hardware. This flag clear by software.

SWRF: Software reset flag.

When MCU is reset by software, SWRF flag will be set to one by hardware. This flag clear by software.

LVRF: Low voltage reset flag.

When MCU is reset by LVR, LVRF flag will be set to one by hardware. This flag clear by software. PORF: Power on reset flag.

When MCU is reset by POR, PORF flag will be set to one by hardware. This flag clear by software.

#### 1.4.6. Example of software reset

MOV TAKEY, #55H MOV TAKEY, #AAH MOV TAKEY, #5AH ; enable SWRES write attribute MOV SWRES, #FFH ; software reset MCU

#### 1.5. Clocks

The default clock is the 22.1184MHz Internal OSC. This clock is used during the initialization stage. The major work of the initialization stage is to determine the clock source used in normal operation.

The internal clock sources are from the internal OSC with difference frequency division as given in table 1-1  $^{,}$  the clock source can set by writer or ICP  $^{\circ}$ 

| Clock source                           |  |  |  |  |  |  |
|----------------------------------------|--|--|--|--|--|--|
| external crystal                       |  |  |  |  |  |  |
| External OSC into Xtal1                |  |  |  |  |  |  |
| 22.1184 MHz from internal OSC(default) |  |  |  |  |  |  |
| 22.1184/2 MHz from internal OSC        |  |  |  |  |  |  |
| 22.1184/4 MHz from internal OSC        |  |  |  |  |  |  |
| 22.1184/8 MHz from internal OSC        |  |  |  |  |  |  |
| 22.1184/16 MHz from internal OSC       |  |  |  |  |  |  |

Table 1-1: Selection of clock source

The internal OSC have  $\pm 2\%\,$  variance at room temperature.



### 2. Instruction Set

All SM59R16G6 instructions are binary code compatible and perform the same functions as they do with the industry standard 8051. The following tables give a summary of the instruction set cycles of the SM59R16G6 Microcontroller core.

|                | Table 2-1: Arithmetic operations            |       |       |        |
|----------------|---------------------------------------------|-------|-------|--------|
| Mnemonic       | Description                                 | Code  | Bytes | Cycles |
| ADD A,Rn       | Add register to accumulator                 | 28-2F | 1     | 1      |
| ADD A, direct  | Add direct byte to accumulator              | 25    | 2     | 2      |
| ADD A,@Ri      | Add indirect RAM to accumulator             | 26-27 | 1     | 2      |
| ADD A,#data    | Add immediate data to accumulator           | 24    | 2     | 2      |
| ADDC A,Rn      | Add register to accumulator with carry flag | 38-3F | 1     | 1      |
| ADDC A, direct | Add direct byte to A with carry flag        | 35    | 2     | 2      |
| ADDC A,@Ri     | Add indirect RAM to A with carry flag       | 36-37 | 1     | 2      |
| ADDC A,#data   | Add immediate data to A with carry flag     | 34    | 2     | 2      |
| SUBB A,Rn      | Subtract register from A with borrow        | 98-9F | 1     | 1      |
| SUBB A, direct | Subtract direct byte from A with borrow     | 95    | 2     | 2      |
| SUBB A,@Ri     | Subtract indirect RAM from A with borrow    | 96-97 | 1     | 2      |
| SUBB A,#data   | Subtract immediate data from A with borrow  | 94    | 2     | 2      |
| INC A          | Increment accumulator                       | 04    | 1     | 1      |
| INC Rn         | Increment register                          | 08-0F | 1     | 2      |
| INC direct     | Increment direct byte                       | 05    | 2     | 3      |
| INC @Ri        | Increment indirect RAM                      | 06-07 | 1     | 3      |
| INC DPTR       | Increment data pointer                      | A3    | 1     | 1      |
| DEC A          | Decrement accumulator                       | 14    | 1     | 1      |
| DEC Rn         | Decrement register                          | 18-1F | 1     | 2      |
| DEC direct     | Decrement direct byte                       | 15    | 2     | 3      |
| DEC @Ri        | Decrement indirect RAM                      | 16-17 | 1     | 3      |
| MUL AB         | Multiply A and B                            | A4    | 1     | 5      |
| DIV            | Divide A by B                               | 84    | 1     | 5      |
| DA A           | Decimal adjust accumulator                  | D4    | 1     | 1      |

Specifications subject to change without notice contact your sales representatives for the most recent information.ISSFD-M05917Ver.GSM59R16G602/2012



#### SM59R16G6/SM59R09G6/SM59R05G6 8-Bit Micro-controller 64KB/36KB/20KB with ISP Flash & 1KB RAM embedded

#### Table 2-2: Logic operations

| Mnemonic         | Description                                | Code  | Bytes | Cycles |
|------------------|--------------------------------------------|-------|-------|--------|
| ANL A,Rn         | AND register to accumulator                | 58-5F | 1     | 1      |
| ANL A, direct    | AND direct byte to accumulator             | 55    | 2     | 2      |
| ANL A,@Ri        | AND indirect RAM to accumulator            | 56-57 | 1     | 2      |
| ANL A,#data      | AND immediate data to accumulator          | 54    | 2     | 2      |
| ANL direct,A     | AND accumulator to direct byte             | 52    | 2     | 3      |
| ANL direct,#data | AND immediate data to direct byte          | 53    | 3     | 4      |
| ORL A,Rn         | OR register to accumulator                 | 48-4F | 1     | 1      |
| ORL A, direct    | OR direct byte to accumulator              | 45    | 2     | 2      |
| ORL A,@Ri        | OR indirect RAM to accumulator             | 46-47 | 1     | 2      |
| ORL A,#data      | OR immediate data to accumulator           | 44    | 2     | 2      |
| ORL direct,A     | OR accumulator to direct byte              | 42    | 2     | 3      |
| ORL direct,#data | OR immediate data to direct byte           | 43    | 3     | 4      |
| XRL A,Rn         | Exclusive OR register to accumulator       | 68-6F | 1     | 1      |
| XRL A, direct    | Exclusive OR direct byte to accumulator    | 65    | 2     | 2      |
| XRL A,@Ri        | Exclusive OR indirect RAM to accumulator   | 66-67 | 1     | 2      |
| XRL A,#data      | Exclusive OR immediate data to accumulator | 64    | 2     | 2      |
| XRL direct,A     | Exclusive OR accumulator to direct byte    | 62    | 2     | 3      |
| XRL direct,#data | Exclusive OR immediate data to direct byte | 63    | 3     | 4      |
| CLR A            | Clear accumulator                          | E4    | 1     | 1      |
| CPL A            | Complement accumulator                     | F4    | 1     | 1      |
| RL A             | Rotate accumulator left                    | 23    | 1     | 1      |
| RLC A            | Rotate accumulator left through carry      | 33    | 1     | 1      |
| RR A             | Rotate accumulator right                   | 03    | 1     | 1      |
| RRC A            | Rotate accumulator right through carry     | 13    | 1     | 1      |
| SWAP A           | Swap nibbles within the accumulator        | C4    | 1     | 1      |

Specifications subject to change without notice contact your sales representatives for the most recent information.ISSFD-M05918Ver.GSM59R16G602/2012



#### SM59R16G6/SM59R09G6/SM59R05G6 8-Bit Micro-controller 64KB/36KB/20KB with ISP Flash & 1KB RAM embedded

#### Table 2-3: Data transfer

| Mnemonic             | Description                                    | Code  | Bytes | Cycles |
|----------------------|------------------------------------------------|-------|-------|--------|
| MOV A,Rn             | Move register to accumulator                   | E8-EF | 1     | 1      |
| MOV A, direct        | Move direct byte to accumulator                | E5    | 2     | 2      |
| MOV A,@Ri            | Move indirect RAM to accumulator               | E6-E7 | 1     | 2      |
| MOV A,#data          | Move immediate data to accumulator             | 74    | 2     | 2      |
| MOV Rn,A             | Move accumulator to register                   | F8-FF | 1     | 2      |
| MOV Rn, direct       | Move direct byte to register                   | A8-AF | 2     | 4      |
| MOV Rn,#data         | Move immediate data to register                | 78-7F | 2     | 2      |
| MOV direct,A         | Move accumulator to direct byte                | F5    | 2     | 3      |
| MOV direct,Rn        | Move register to direct byte                   | 88-8F | 2     | 3      |
| MOV direct1, direct2 | Move direct byte to direct byte                | 85    | 3     | 4      |
| MOV direct,@Ri       | Move indirect RAM to direct byte               | 86-87 | 2     | 4      |
| MOV direct,#data     | Move immediate data to direct byte             | 75    | 3     | 3      |
| MOV @Ri,A            | Move accumulator to indirect RAM               | F6-F7 | 1     | 3      |
| MOV @Ri,direct       | Move direct byte to indirect RAM               | A6-A7 | 2     | 5      |
| MOV @Ri,#data        | Move immediate data to indirect RAM            | 76-77 | 2     | 3      |
| MOV DPTR,#data16     | Load data pointer with a 16-bit constant       | 90    | 3     | 3      |
| MOVC A,@A+DPTR       | Move code byte relative to DPTR to accumulator | 93    | 1     | 3      |
| MOVC A,@A+PC         | Move code byte relative to PC to accumulator   | 83    | 1     | 3      |
| MOVX A,@Ri           | Move external RAM (8-bit addr.) to A           | E2-E3 | 1     | 3      |
| MOVX A,@DPTR         | Move external RAM (16-bit addr.) to A          | E0    | 1     | 3      |
| MOVX @Ri,A           | Move A to external RAM (8-bit addr.)           | F2-F3 | 1     | 4      |
| MOVX @DPTR,A         | Move A to external RAM (16-bit addr.)          | F0    | 1     | 4      |
| PUSH direct          | Push direct byte onto stack                    | C0    | 2     | 4      |
| POP direct           | Pop direct byte from stack                     | D0    | 2     | 3      |
| XCH A,Rn             | Exchange register with accumulator             | C8-CF | 1     | 2      |
| XCH A, direct        | Exchange direct byte with accumulator          | C5    | 2     | 3      |
| XCH A,@Ri            | Exchange indirect RAM with accumulator         | C6-C7 | 1     | 3      |
| XCHD A,@Ri           | Exchange low-order nibble indir. RAM with A    | D6-D7 | 1     | 3      |

Specifications subject to change without notice contact your sales representatives for the most recent information.ISSFD-M05919Ver.GSM59R16G602/2012



#### SM59R16G6/SM59R09G6/SM59R05G6 8-Bit Micro-controller 64KB/36KB/20KB with ISP Flash & 1KB RAM embedded

#### Table 2-4: Program branches

| Mnemonic            | Description                                    | Code  | Bytes | Cycles |
|---------------------|------------------------------------------------|-------|-------|--------|
| ACALL addr11        | Absolute subroutine call                       | xxx11 | 2     | 6      |
| LCALL addr16        | Long subroutine call                           | 12    | 3     | 6      |
| RET                 | from subroutine                                | 22    | 1     | 4      |
| RETI                | from interrupt                                 | 32    | 1     | 4      |
| AJMP addr11         | Absolute jump                                  | xxx01 | 2     | 3      |
| LJMP addr16         | Long iump                                      | 02    | 3     | 4      |
| SJMP rel            | Short jump (relative addr.)                    | 80    | 2     | 3      |
| JMP @A+DPTR         | Jump indirect relative to the DPTR             | 73    | 1     | 2      |
| JZ rel              | Jump if accumulator is zero                    | 60    | 2     | 3      |
| JNZ rel             | Jump if accumulator is not zero                | 70    | 2     | 3      |
| JC rel              | Jump if carry flag is set                      | 40    | 2     | 3      |
| JNC                 | Jump if carry flag is not set                  | 50    | 2     | 3      |
| JB bit,rel          | Jump if direct bit is set                      | 20    | 3     | 4      |
| JNB bit,rel         | Jump if direct bit is not set                  | 30    | 3     | 4      |
| JBC bit, direct rel | Jump if direct bit is set and clear bit        | 10    | 3     | 4      |
| CJNE A, direct rel  | Compare direct byte to A and jump if not equal | B5    | 3     | 4      |
| CJNE A,#data rel    | Compare immediate to A and jump if not equal   | B4    | 3     | 4      |
| CJNE Rn,#data rel   | Compare immed. to reg. and jump if not equal   | B8-BF | 3     | 4      |
| CJNE @Ri,#data rel  | Compare immed. to ind. and jump if not equal   | B6-B7 | 3     | 4      |
| DJNZ Rn,rel         | Decrement register and jump if not zero        | D8-DF | 2     | 3      |
| DJNZ direct,rel     | Decrement direct byte and jump if not zero     | D5    | 3     | 4      |
| NOP                 | No operation                                   | 00    | 1     | 1      |

#### Table 2-5: Boolean manipulation

| Mnemonic   | Description                           | Code | Bytes | Cycles |
|------------|---------------------------------------|------|-------|--------|
| CLR C      | Clear carry flag                      | C3   | 1     | 1      |
| CLR bit    | Clear direct bit                      | C2   | 2     | 3      |
| SETB C     | Set carry flag                        | D3   | 1     | 1      |
| SETB bit   | Set direct bit                        | D2   | 2     | 3      |
| CPL C      | Complement carry flag                 | B3   | 1     | 1      |
| CPL bit    | Complement direct bit                 | B2   | 2     | 3      |
| ANL C,bit  | AND direct bit to carry flag          | 82   | 2     | 2      |
| ANL C,/bit | AND complement of direct bit to carry | B0   | 2     | 2      |
| ORL C,bit  | OR direct bit to carry flag           | 72   | 2     | 2      |
| ORL C,/bit | OR complement of direct bit to carry  | A0   | 2     | 2      |
| MOV C,bit  | Move direct bit to carry flag         | A2   | 2     | 2      |
| MOV bit,C  | Move carry flag to direct bit         | 92   | 2     | 3      |

Specifications subject to change without notice contact your sales representatives for the most recent information.ISSFD-M05920Ver.GSM59R16G602/2012



### 3. Memory Structure

The SM59R16G6 memory structure follows general 8052 structure. It is integrate the expanded 1KB data memory and 64KB program memory.

#### 3.1. Program Memory

The SM59R16G6 has 64KB on-chip flash memory which can be used as general program memory or EEPROM, on which include up to 4K byte specific ISP service program memory space. The address range for the 64K byte is \$0000 to \$FFFF. The address range for the ISP service program is \$F000 to \$FFFF. The ISP service program size can be partitioned as N blocks of 256 byte (N=0 to 16). When N=0 means no ISP service program space available, total 64K byte memory used as program memory. When N=1 means address \$FF00 to \$FFFF reserved for ISP service program. When N=2 means memory address \$FE00 to \$FFFF reserved for ISP service program...etc. Value N can be set and programmed into SM59R16G6 by the writer or ICP. It can be used to record any data as EEPROM. The procedure of this EEPROM application function is described in the section 16 on internal ISP.

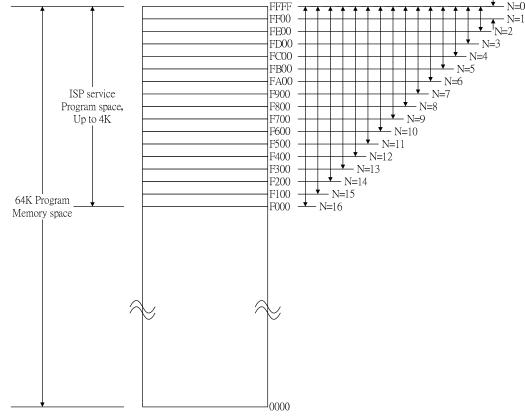



Fig. 3-1: SM59R16G6 programmable Flash

SM59R16G6/SM59R09G6/SM59R05G6 8-Bit Micro-controller 64KB/36KB/20KB with ISP Flash & 1KB RAM embedded

新茂國際科技股份有限公司 SyncMOS Technologies International,Inc.

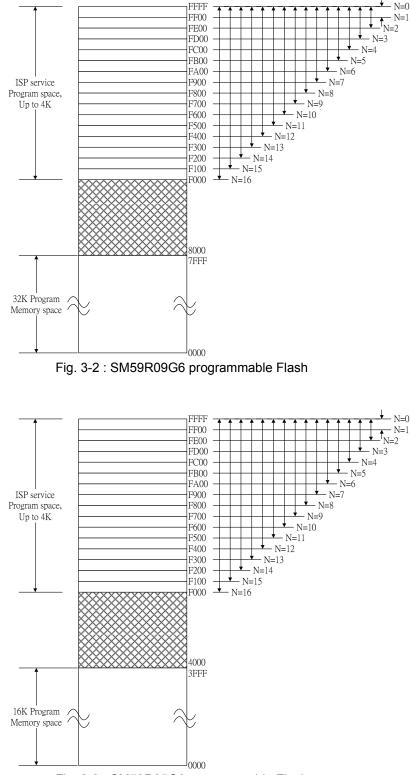



Fig. 3-3 : SM59R05G6 programmable Flash

Specifications subject to change without notice contact your sales representatives for the most recent information.ISSFD-M05922Ver.GSM59R16G602/2012



#### 3.2. Data Memory

The SM59R16G6 has 1K + 256Bytes on-chip SRAM, 256 Bytes of it are the same as general 8052 internal memory structure while the expanded 1KBytes on-chip SRAM can be accessed by external memory addressing method ( by instruction MOVX.)

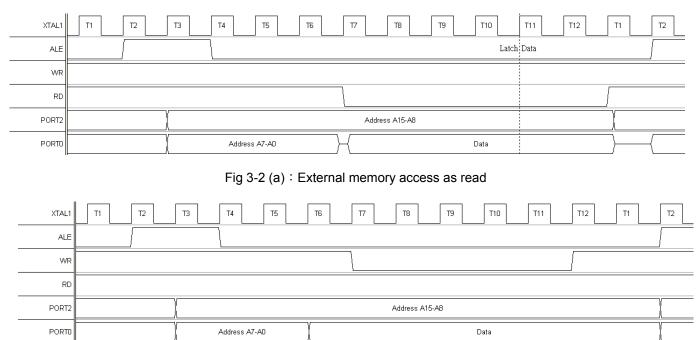
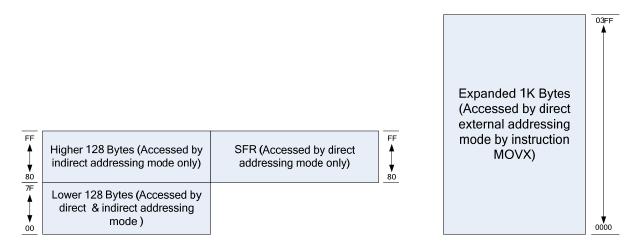
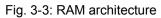





Fig 3-2 (b) : External memory access as write





### 3.2.1. Data memory - lower 128 byte (00H to 7FH)

Data memory 00H to FFH is the same as 8052. The address 00H to 7FH can be accessed by direct and indirect addressing modes. Address 00H to 1FH is register area. Address 20H to 2FH is memory bit area. Address 30H to 7FH is for general memory area.

Specifications subject to change without notice contact your sales representatives for the most recent information.ISSFD-M05923Ver.GSM59R16G602/2012



#### 3.2.2. Data memory - higher 128 byte (80H to FFH)

The address 80H to FFH can be accessed by indirect addressing mode. Address 80H to FFH is data area.

#### 3.2.3. Data memory - Expanded 1024 bytes (\$0000 to \$03FF)

From external address 0000H to 03FFH is the on-chip expanded SRAM area, total 1K Bytes. This area can be accessed by external direct addressing mode (by instruction MOVX).

If the address of instruction MOVX @DPTR is larger then 03FFH, the SM59R16G6 will generate the external memory control signal automatically.

The address space of instruction MOVX @Ri, i=0, 1 is determined by RCON [7:0] of special function register \$86 RCON (internal RAM control register). The default setting of RCON [7:0] is 00H (page0). One page of data RAM is 256 bytes.

When EMEN = 0, the internal 1K expanded RAM is enabled. If access memory space is more than 1K byte, the value of RCON is sent to Port2 to access external RAM.

When EMEN = 1, the internal 1K expanded RAM is disabled. The value of RCON is invalid and high byte address is decided by register context of Port2 register P2 [7:0].

| MOVX @Ri, A<br>MOVX A,@Ri | $0 \leq RCON[7:0] \leq 3$ | $4 \leq \text{RCON} [7:0] \leq 255$ |
|---------------------------|---------------------------|-------------------------------------|
| EMEN = 0                  | Addr [15:8] <= RCON[7:0]  | Port2 [7:0] <= RCON[7:0]            |
| EMEN = 1                  | Port2 [7:0] <= P2 [7:0]   | Port2 [7:0] <= P2 [7:0]             |



### 4. CPU Engine

The SM59R16G6 engine is composed of four components:

- a. Control unit
- b. Arithmetic logic unit
- c. Memory control unit
- d. RAM and SFR control unit

The SM59R16G6 engine allows to fetch instruction from program memory and to execute using RAM or SFR. The following paragraphs describe the main engine registers.

| Mnemonic | Description                      | Direct | Bit 7 | Bit 6                       | Bit 5  | Bit 4 | Bit 3  | Bit 2  | Bit 1     | Bit 0 | RESET |
|----------|----------------------------------|--------|-------|-----------------------------|--------|-------|--------|--------|-----------|-------|-------|
|          |                                  |        | •     | 805                         | 1 Core |       |        |        |           |       |       |
| ACC      | Accumulator                      | E0H    | ACC.7 | ACC.6                       | ACC.5  | ACC.4 | ACC.3  | ACC.2  | ACC.1     | ACC.0 | 00H   |
| В        | B register                       | F0H    | B.7   | B.6                         | B.5    | B.4   | B.3    | B.2    | B.1       | B.0   | 00H   |
| PSW      | Program status<br>word           | D0H    | CY    | CY AC F0 RS[1:0] OV PSW.1 P |        |       |        | 00H    |           |       |       |
| SP       | Stack Pointer                    | 81H    |       |                             |        | SP[   | 7:0]   |        |           |       | 07H   |
| DPL      | Data pointer low 0               | 82H    |       | DPL[7:0]                    |        |       |        |        |           |       | 00H   |
| DPH      | Data pointer high<br>0           | 83H    |       | DPH[7:0]                    |        |       |        |        |           | 00H   |       |
| DPL1     | Data pointer low 1               | 84H    |       |                             |        | DPL'  | 1[7:0] |        |           |       | 00H   |
| DPH1     | Data pointer high<br>1           | 85H    |       |                             |        | DPH   | 1[7:0] |        |           |       | 00H   |
| AUX      | Auxiliary register               | 91H    | BRGS  | -                           | P4SPI  | P1UR  | P4IIC  | -      | P2PW<br>M | DPS   | 00H   |
| RCON     | Internal RAM<br>control register | 86H    |       | RCON[7:0]                   |        |       |        |        | 00H       |       |       |
| IFCON    | Interface control register       | 8FH    | ITS   | CDPR                        | -      | -     | ALEC   | C[1:0] | EMEN      | ISPE  | 00H   |

#### 4.1. Accumulator

ACC is the Accumulator register. Most instructions use the accumulator to store the operand.

| Mnemor | Addre | ess: E0H |       |       |       |       |       |       |
|--------|-------|----------|-------|-------|-------|-------|-------|-------|
| 7      | 6     | 5        | 4     | 3     | 2     | 1     | 0     | Reset |
| ACC.7  | ACC.6 | ACC05    | ACC.4 | ACC.3 | ACC.2 | ACC.1 | ACC.0 | 00H   |

ACC[7:0]: The A (or ACC) register is the standard 8052 accumulator.

#### 4.2. B Register

The B register is used during multiply and divide instructions. It can also be used as a scratch pad register to store temporary data.

| Mnemo | Add | Address: F0H |     |     |     |     |     |       |  |
|-------|-----|--------------|-----|-----|-----|-----|-----|-------|--|
| 7     | 6   | 5            | 4   | 3   | 2   | 1   | 0   | Reset |  |
| B.7   | B.6 | B.5          | B.4 | B.3 | B.2 | B.1 | B.0 | 00H   |  |

B[7:0]: The B register is the standard 8052 register that serves as a second accumulator.

| Specifications subject to change without notice contact | your sales representativ | es for the mos | st recent information | ation.  |
|---------------------------------------------------------|--------------------------|----------------|-----------------------|---------|
| ISSFD-M059                                              | 25                       | Ver.G          | SM59R16G6             | 02/2012 |



#### 4.3. Program Status Word

| Mnemo | Addr | Address: D0H |          |   |    |    |   |       |
|-------|------|--------------|----------|---|----|----|---|-------|
| 7     | 6    | 5            | 4        | 3 | 2  | 1  | 0 | Reset |
| CY    | AC   | F0           | RS [1:0] |   | OV | F1 | Р | 00H   |

CY: Carry flag.

AC: Auxiliary Carry flag for BCD operations.

F0: General purpose Flag 0 available for user.

RS[1:0]: Register bank select, used to select working register bank.

|    | RS[1:0] | Bank Selected | Location  |
|----|---------|---------------|-----------|
|    | 00      | Bank 0        | 00H – 07H |
|    | 01      | Bank 1        | 08H – 0FH |
|    | 10      | Bank 2        | 10H – 17H |
|    | 11      | Bank 3        | 18H – 1FH |
| 1. |         |               |           |

OV: Overflow flag.

F1: General purpose Flag 1 available for user.

P: Parity flag, affected by hardware to indicate odd/even number of "one" bits in the Accumulator, i.e. even parity.

#### 4.4. Stack Pointer

The stack pointer is a 1-byte register initialized to 07H after reset. This register is incremented before PUSH and CALL instructions, causing the stack to start from location 08H.

| Mnemo    | Mnemonic: SP Address: |   |   |   |   |   |   |       |  |  |
|----------|-----------------------|---|---|---|---|---|---|-------|--|--|
| 7        | 6                     | 5 | 4 | 3 | 2 | 1 | 0 | Reset |  |  |
| SP [7:0] |                       |   |   |   |   |   |   | 07H   |  |  |

SP[7:0]: The Stack Pointer stores the scratchpad RAM address where the stack begins. In other words, it always points to the top of the stack.

#### 4.5. Data Pointer

The data pointer (DPTR) is 2-bytes wide. The lower part is DPL, and the highest is DPH. It can be loaded as a 2-byte register (e.g. MOV DPTR, #data16) or as two separate registers (e.g. MOV DPL,#data8). It is generally used to access the external code or data space (e.g. MOVC A, @A+DPTR or MOVX A, @DPTR respectively).

| Mnemo | nic: DPL               |         |     |         |   |   | Addre | ess: 82H |
|-------|------------------------|---------|-----|---------|---|---|-------|----------|
| 7     | 6                      | 5       | 4   | 3       | 2 | 1 | 0     | Reset    |
|       |                        |         | DPL | [7:0]   |   |   |       | 00H      |
|       | ata pointe<br>nic: DPH | r Low 0 |     |         |   |   | Addre | ess: 83H |
| 7     | 6                      | 5       | 4   | 3       | 2 | 1 | 0     | Reset    |
|       |                        |         | DPF | H [7:0] |   |   |       | 00H      |
|       |                        |         |     |         |   |   |       | _        |

DPH [7:0]: Data pointer High 0



#### 4.6. Data Pointer 1

The Dual Data Pointer accelerates the moves of data block. The standard DPTR is a 16-bit register that is used to address external memory or peripherals. In the SM59R16G6 core the standard data pointer is called DPTR, the second data pointer is called DPTR1. The data pointer select bit chooses the active pointer. The data pointer select bit is located in LSB of AUX register (DPS).

The user switches between pointers by toggling the LSB of AUX register. All DPTR-related instructions use the currently selected DPTR for any activity.

|     | Mnemo       | nic: DPL1  |          |     |         |   |   | Addre | ess: 84H  |
|-----|-------------|------------|----------|-----|---------|---|---|-------|-----------|
|     | 7           | 6          | 5        | 4   | 3       | 2 | 1 | 0     | Reset     |
|     |             |            |          | DPL | 1 [7:0] |   |   |       | 00H       |
| DPL | _1[7:0]: Da | ata pointe | r Low 1  |     |         |   |   |       |           |
|     | Mnemo       | nic: DPH1  | l        |     |         |   |   | Addre | ess: 85H  |
|     | 7           | 6          | 5        | 4   | 3       | 2 | 1 | 0     | Reset     |
|     |             |            |          | DPH | 1 [7:0] |   |   |       | 00H       |
| DPH | 11[7:0]: D  | ata pointe | r High 1 |     |         |   |   |       |           |
|     | Mnomoni     |            |          |     |         |   |   | ۸dd   | rocc: 014 |

| Mnemoni | Mnemonic: AUX |       |      |       |   |       |     |       |  |  |
|---------|---------------|-------|------|-------|---|-------|-----|-------|--|--|
| 7       | 6             | 5     | 4    | 3     | 2 | 1     | 0   | Reset |  |  |
| BRGS    | -             | P4SPI | P1UR | P4IIC | - | P2PWM | DPS | 00H   |  |  |

DPS: Data Pointer selects register. DPS = 1 is selected DPTR1.

#### 4.7. Internal RAM control register

SM59R16G6 has 1K byte on-chip expanded RAM which can be accessed by external memory addressing method only (By instruction MOVX). The address space of instruction MOVX @Ri, i= 0, 1 is determined by RCON [7:0] of RCON. The default setting of RCON [7:0] is 00H (page0).

| Mnemo     | nic: RCO | Ν |   |   |   |   | Addre | ess: 86H |
|-----------|----------|---|---|---|---|---|-------|----------|
| 7         | 6        | 5 | 4 | 3 | 2 | 1 | 0     | Reset    |
| RCON[7:0] |          |   |   |   |   |   |       | 00H      |

#### 4.8. Interface control register

|   | Mnemo | nic: IFCO |   |   | Addres | ss: 8FH |      |      |       |
|---|-------|-----------|---|---|--------|---------|------|------|-------|
|   | 7     | 6         | 5 | 4 | 3      | 2       | 1    | 0    | Reset |
|   | ITS   | CDPR      | - | - | ALEC   | C[1:0]  | EMEN | ISPE | 00H   |
| - |       |           |   |   |        |         |      |      |       |

ITS: Instruction timing select. (default is 2T)

| ITS = 0, | 2T | instruction | mode |
|----------|----|-------------|------|

ITS = 1, 1T instruction mode.

CDPR: code protect (Read Only)

ALEC[1:0]: ALE output control register

| <u>ا</u> . | ALE output control | register.                          |
|------------|--------------------|------------------------------------|
|            | ALEC[1:0]          | ALE Output                         |
|            | 00                 | Always output                      |
|            | 01                 | No ALE output                      |
|            | 10                 | Only Read or Write have ALE output |
|            | 11                 | reserved                           |

Specifications subject to change without notice contact your sales representatives for the most recent information. ISSFD-M059 27 Ver.G SM59R16G6 02/2012



EMEN: Internal 1K SRAM disable.(default is enable) EMEN = 0, Enable internal 1K RAM. EMEN = 1, Disable internal 1K RAM. ISPE: ISP function enable bit ISPE = 1, enable ISP function ISPE = 0, disable ISP function



### 5. GPIO

The SM59R16G6 has six I/O ports: Port 0, Port 1, Port 2, Port 3, Port 4, and Port 5. Ports 0, 1, 2, 3, 4 are 8-bit ports <sup>,</sup> Port 5 is a 6-bit port. These are: quasi-bidirectional (standard 8051 port outputs), push-pull, open drain, and input-only. Two configuration registers for each port select the output type for each port pin. All I/O port pins on the SM59R16G6 may be configured by software to one of four types on a pin-by-pin basis, shown as below:

| Mnemonic | Description                   | Direct | Bit 7 Bit 6 | Bit 5       | Bit 4 | Bit 3  | Bit 2  | Bit 1 | Bit 0 | RESET |  |  |
|----------|-------------------------------|--------|-------------|-------------|-------|--------|--------|-------|-------|-------|--|--|
|          | I/O port function register    |        |             |             |       |        |        |       |       |       |  |  |
| P0M0     | Port 0 output mode 0          | D2H    | P0M0 [7:0]  |             |       |        |        |       |       | 00H   |  |  |
| P0M1     | Port 0 output mode 1          |        |             | P0M1        | [7:0] |        |        |       | 00H   |       |  |  |
| P1M0     | Port 1 output mode 0          | D4H    |             |             | P1M0  | [7:0]  |        |       |       | 00H   |  |  |
| P1M1     | Port 1 output mode 1          | D5H    |             |             | P1M1  | [7:0]  |        |       |       | 00H   |  |  |
| P2M0     | Port 2 output mode 0          | D6H    | P2M0[7:0]   |             |       |        |        |       |       | 00H   |  |  |
| P2M1     | Port 2 output mode 1          | D7H    | P2M1[7:0]   |             |       |        |        |       |       | 00H   |  |  |
| P3M0     | Port 3 output mode 0          | DAH    |             |             | P3M0  | )[7:0] |        |       |       | 00H   |  |  |
| P3M1     | Port 3 output mode 1          | DBH    |             |             | P3M1  | [7:0]  |        |       |       | 00H   |  |  |
| P4M0     | Port 4 output mode 0          | DCH    |             |             | P4M0  | )[7:0] |        |       |       | 00H   |  |  |
| P4M1     | Port 4 output mode 1          | DDH    |             |             | P4M1  | [7:0]  |        |       |       | 00H   |  |  |
| P5M0     | P5M0 Port 5 output mode 0 DEH |        |             | - P5M0[5:0] |       |        |        |       |       | 00H   |  |  |
| P5M1     | Port 5 output mode 1          | DFH    | -           |             |       | P5M    | 1[5:0] |       |       | 00H   |  |  |

| PxM1.y | PxM0.y | Port output mode                                           |
|--------|--------|------------------------------------------------------------|
| 0      | 0      | Quasi-bidirectional (standard 8051 port outputs) (pull-up) |
| 0      | 1      | Push-pull                                                  |
| 1      | 0      | Input only (high-impedance)                                |
| 1      | 1      | Open drain                                                 |

The OCI\_SCL 、ALE 、OCI\_SDA and RESET can be define as P4.4 、P4.5 、P4.6 and P4.7 by writer or ISP 。

The XTAL2 and XTAL1 can define as P5.4 and P5.5 by writer or ISP  $\cdot$  when user use internal OSC as system clock; when user use external OSC as system clock and input into XTAL1  $\cdot$  Only XTAL2 can be defined as P5.4  $\circ$  .

For general-purpose applications, every pin can be assigned to either high or low independently as given below:

| Mnemonic | Description | Direct | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | RESET |
|----------|-------------|--------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
|          | Ports       |        |       |       |       |       |       |       |       |       |       |
| Port 5   | Port 5      | D8H    | -     | -     | P5.5  | P5.4  | P5.3  | P5.2  | P5.1  | P5.0  | 0FH   |
| Port 4   | Port 4      | E8H    | P4.7  | P4.6  | P4.5  | P4.4  | P4.3  | P4.2  | P4.1  | P4.0  | FFH   |
| Port 3   | Port 3      | B0H    | P3.7  | P3.6  | P3.5  | P3.4  | P3.3  | P3.2  | P3.1  | P3.0  | FFH   |
| Port 2   | Port 2      | A0H    | P2.7  | P2.6  | P2.5  | P2.4  | P2.3  | P2.2  | P2.1  | P2.0  | FFH   |
| Port 1   | Port 1      | 90H    | P1.7  | P1.6  | P1.5  | P1.4  | P1.3  | P1.2  | P1.1  | P1.0  | FFH   |
| Port 0   | Port 0      | 80H    | P0.7  | P0.6  | P0.5  | P0.4  | P0.3  | P0.2  | P0.1  | P0.0  | FFH   |

| Mnemo | Addre | ss: 80h |      |      |      |      |      |       |
|-------|-------|---------|------|------|------|------|------|-------|
| 7     | 6     | 5       | 4    | 3    | 2    | 1    | 0    | Reset |
| P0.7  | P0.6  | P0.5    | P0.4 | P0.3 | P0.2 | P0.1 | P0.0 | FFH   |

P0.7~ 0: Port0 [7] ~ Port0 [0]



| Mnemo       | nic: P1                        |           |      |      |      |      | Addre  | ss: 90H |  |  |  |  |  |
|-------------|--------------------------------|-----------|------|------|------|------|--------|---------|--|--|--|--|--|
| 7           | 6                              | 5         | 4    | 3    | 2    | 1    | 0      | Reset   |  |  |  |  |  |
| P1.7        | P1.6                           | P1.5      | P1.4 | P1.3 | P1.2 | P1.1 | P1.0   | FFH     |  |  |  |  |  |
|             |                                |           |      |      |      |      |        |         |  |  |  |  |  |
| P1.7~ 0: Po | P1.7~ 0: Port1 [7] ~ Port1 [0] |           |      |      |      |      |        |         |  |  |  |  |  |
| Mnemo       | nic: P2                        |           |      |      |      |      | Addres | s: A0H  |  |  |  |  |  |
| 7           | 6                              | 5         | 4    | 3    | 2    | 1    | 0      | Reset   |  |  |  |  |  |
| P2.7        | P2.6                           | P2.5      | P2.4 | P2.3 | P2.2 | P2.1 | P2.0   | FFH     |  |  |  |  |  |
| P2.7~ 0: P  | ort2 [7] ~                     | Port2 [0] |      |      |      |      |        |         |  |  |  |  |  |
| Mnemo       | nic: P3                        |           |      |      |      |      | Addres | s: B0H  |  |  |  |  |  |
| 7           | 6                              | 5         | 4    | 3    | 2    | 1    | 0      | Reset   |  |  |  |  |  |
| P3.7        | P3.6                           | P3.5      | P3.4 | P3.3 | P3.2 | P3.1 | P3.0   | FFH     |  |  |  |  |  |
| P3.7~ 0: Po | ort3 [7] ~                     | Port3 [0] |      |      |      |      |        |         |  |  |  |  |  |
| Mnemo       | nic: P4                        |           |      |      |      |      | Addres | s: E8H  |  |  |  |  |  |
| 7           | 6                              | 5         | 4    | 3    | 2    | 1    | 0      | Reset   |  |  |  |  |  |
| P4.7        | P4.6                           | P4.5      | P4.4 | P4.3 | P4.2 | P4.1 | P4.0   | FFH     |  |  |  |  |  |
| P4.7~ 0: P  | P4.7~ 0: Port4 [7] ~ Port4 [0] |           |      |      |      |      |        |         |  |  |  |  |  |
| Mnemo       | nic: P5                        |           |      |      |      |      | Addres | s: D8H  |  |  |  |  |  |
| 7           | 5                              | 4         | 3    | 2    | 1    | 0    | Reset  |         |  |  |  |  |  |
| -           | -                              | P5.5      | P5.4 | P5.3 | P5.2 | P5.1 | P5.0   | 3FH     |  |  |  |  |  |

P5.5~ 0: Port5 [5] ~ Port5 [0]

Specifications subject to change without notice contact your sales representatives for the most recent information.ISSFD-M05930Ver.GSM59R16G602/2012



### 6. Timer 0 and Timer 1

The SM59R16G6 has three 16-bit timer/counter registers: Timer 0, Timer 1 and Timer 2. All can be configured for counter or timer operations.

In timer mode, the Timer 0 register or Timer 1 register is incremented every 1/12/96 machine cycles, which means that it counts up after every 1/12/96 periods of the clock signal. It's dependent on SFR(PFCON).

In counter mode, the register is incremented when the falling edge is observed at the corresponding input pin T0or T1. Since it takes 2 machine cycles to recognize a 1-to-0 event, the maximum input count rate is 1/2 of the oscillator frequency. There are no restrictions on the duty cycle, however to ensure proper recognition of 0 or 1 state, an input should be stable for at least 1 machine cycle.

Four operating modes can be selected for Timer 0 and Timer 1. Two Special Function registers (TMOD and TCON) are used to select the appropriate mode.

| Mnemonic | Description                                 | Direct | Bit 7 | Bit 6    | Bit 5        | Bit 4 | Bit 3 | Bit 2  | Bit 1 | Bit 0  | RESET |
|----------|---------------------------------------------|--------|-------|----------|--------------|-------|-------|--------|-------|--------|-------|
|          |                                             |        |       | Timer    | 0 and 1      |       |       |        |       |        |       |
| TL0      | Timer 0, low byte                           | 8AH    |       |          |              | TL0[  | 7:0]  |        |       |        | 00H   |
| TH0      | Timer 0 , high<br>byte                      | 8CH    |       |          |              | ТНО   | [7:0] |        |       |        | 00H   |
| TL1      | Timer 1, low byte                           | 8BH    |       | TL1[7:0] |              |       |       |        |       |        | 00H   |
| TH1      | Timer 1 , high<br>byte                      | 8DH    |       | TH1[7:0] |              |       |       |        |       |        | 00H   |
| TMOD     | Timer Mode<br>Control                       | 89H    | GATE  | C/T      | M1           | M0    | GATE  | C/T    | M1    | MO     | 00H   |
| TCON     | Timer/Counter<br>Control                    | 88H    | TF1   | TR1      | TF0          | TR0   | IE1   | IT1    | IE0   | IT0    | 00H   |
| PFCON    | Peripheral<br>Frequency control<br>register | D9H    |       |          | S0RELPS[1:0] |       | T1PS  | S[1:0] | TOPS  | 6[1:0] | 00H   |

#### 6.1. Timer/counter mode control register (TMOD)

|   | Mnemonic: TMOD Address: |     |      |    |      |      |      |    |       |  |  |  |
|---|-------------------------|-----|------|----|------|------|------|----|-------|--|--|--|
|   | 7                       | 6   | 5    | 4  | 3    | 2    | 1    | 0  | Reset |  |  |  |
|   | GATE                    | C/T | M1   | M0 | GATE | C/T  | M1   | M0 | 00H   |  |  |  |
| ł |                         | Tim | er 1 |    |      | Time | er O |    |       |  |  |  |

GATE: If set, enables external gate control (pin INT0 or INT1 for Counter 0 or 1, respectively). When INT0 or INT1 is high, and TRx bit is set (see TCON register), a counter is incremented every falling edge on T0 or T1 input pin

C/T: Selects Timer or Counter operation. When set to 1, a counter operation is performed, when cleared to 0, the corresponding register will function as a timer.

M[1:0]: Selects mode for Timer/Counter 0 or Timer/Counter 1.

| CICCIO | moue io |       |                                                   |
|--------|---------|-------|---------------------------------------------------|
| M1     | MO      | Mode  | Function                                          |
| 0      | 0       | Mode0 | 13-bit counter/timer, with 5 lower bits in TL0 or |
|        |         |       | TL1 register and 8 bits in TH0 or TH1 register    |
|        |         |       | (for Timer 0 and Timer 1, respectively). The 3    |
|        |         |       | high order bits of TL0 and TL1 are hold at zero.  |
| 0      | 1       | Mode1 | 16-bit counter/timer.                             |
| 1      | 0       | Mode2 | 8 -bit auto-reload counter/timer. The reload      |
|        |         |       | value is kept in TH0 or TH1, while TL0 or TL1 is  |
|        |         |       | incremented every machine cycle. When TLx         |
|        |         |       | overflows, a value from THx is copied to TLx.     |

Specifications subject to change without notice contact your sales representatives for the most recent information.



#### SM59R16G6/SM59R09G6/SM59R05G6 8-Bit Micro-controller 64KB/36KB/20KB with ISP Flash & 1KB RAM embedded

| 1 | 1 | Mode3 | If Timer 1 M1 and M0 bits are set to 1, Timer 1<br>stops. If Timer 0 M1 and M0 bits are set to 1,<br>Timer 0 acts as two independent 8 bit timers / |
|---|---|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------|
|   |   |       | counters.                                                                                                                                           |

#### 6.2. Timer/counter control register (TCON)

| Mnemo | Addres | ss: 88H |     |     |     |     |     |       |
|-------|--------|---------|-----|-----|-----|-----|-----|-------|
| 7     | 6      | 5       | 4   | 3   | 2   | 1   | 0   | Reset |
| TF1   | TR1    | TF0     | TR0 | IE1 | IT1 | IE0 | IT0 | 00H   |

TF1: Timer 1 overflow flag set by hardware when Timer 1 overflows. This flag can be cleared by software and is automatically cleared when interrupt is processed.

- TR1: Timer 1 Run control bit. If cleared, Timer 1 stops.
- TF0: Timer 0 overflow flag set by hardware when Timer 0 overflows. This flag can be cleared by software and is automatically cleared when interrupt is processed.
- TR0: Timer 0 Run control bit. If cleared, Timer 0 stops.
- IE1: Interrupt 1 edge flag. Set by hardware, when falling edge on external pin INT1 is observed. Cleared when interrupt is processed.
- IT1: Interrupt 1 type control bit. Selects falling edge or low level on input pin to cause interrupt.
- IE0: Interrupt 0 edge flag. Set by hardware, when falling edge on external pin INT0 is observed. Cleared when interrupt is processed.
- IT0: Interrupt 0 type control bit. Selects falling edge or low level on input pin to cause interrupt.

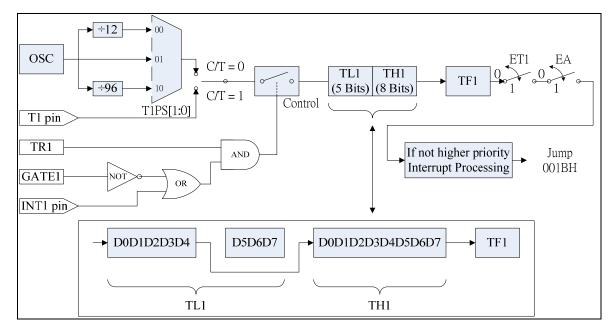
#### 6.3. Peripheral Frequency control register (PFCON)

### Mnemonic: PFCON

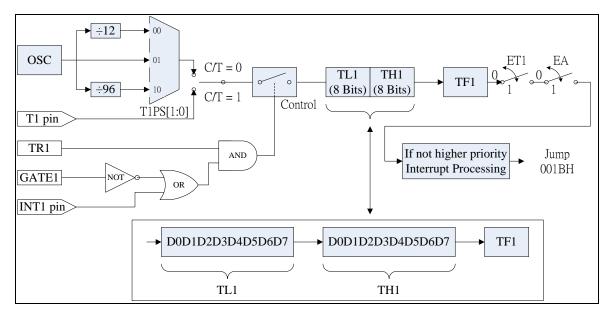
| Mnemonic: PFCON Address: D |   |              |   |      |        |     |           |       |  |  |  |
|----------------------------|---|--------------|---|------|--------|-----|-----------|-------|--|--|--|
| 7                          | 6 | 5            | 4 | 3    | 2      | 1   | 0         | Reset |  |  |  |
| -                          | - | SORELPS[1:0] |   | T1PS | S[1:0] | T0P | T0PS[1:0] |       |  |  |  |

T0PS[1:0]: Timer0 Prescaler select

| T0PS[1:0] | Prescaler |  |  |  |  |  |  |
|-----------|-----------|--|--|--|--|--|--|
| 00        | Fosc/12   |  |  |  |  |  |  |
| 01        | Fosc      |  |  |  |  |  |  |
| 10        | Fosc/96   |  |  |  |  |  |  |
| 11        | reserved  |  |  |  |  |  |  |
|           |           |  |  |  |  |  |  |

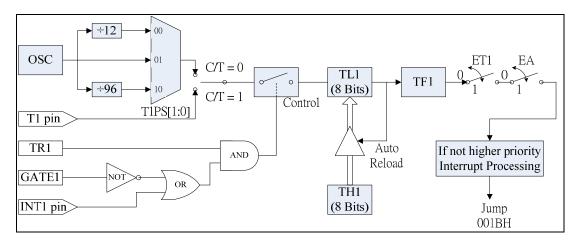

T1PS[1:0]: Timer1 Prescaler select

| T1PS[1:0] | Prescaler |
|-----------|-----------|
| 00        | Fosc/12   |
| 01        | Fosc      |
| 10        | Fosc/96   |
| 11        | reserved  |

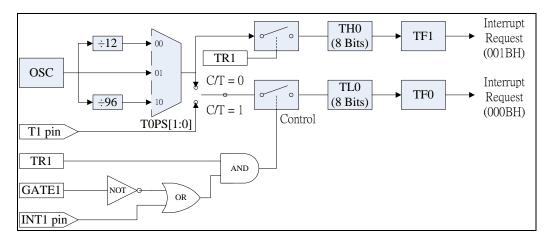



SM59R16G6/SM59R09G6/SM59R05G6 8-Bit Micro-controller 64KB/36KB/20KB with ISP Flash & 1KB RAM embedded

### 6.4. Mode 0 (13-bit Counter/Timer)




#### 6.5. Mode 1 (16-bit Counter/Timer)

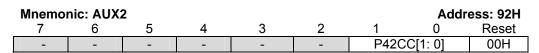





### 6.6. Mode 2 (8-bit auto-reload Counter/Timer)



#### 6.7. Mode 3 (Timer 0 acts as two independent 8 bit Timers / Counters)






## 7. Timer 2 and Capture/Compare Unit

Timer 2 is not only a 16-bit timer, also a 4-channel unit with compare, capture and reload functions. It is very similar to the programmable counter array (PCA) in some other MCUs except pulse width modulation (PWM).

| Mnemonic | Description                                       | Direct | Bit 7      | Bit 6                       | Bit 5     | Bit 4      | Bit 3  | Bit 2      | Bit 1 | Bit 0 | RESET |
|----------|---------------------------------------------------|--------|------------|-----------------------------|-----------|------------|--------|------------|-------|-------|-------|
|          |                                                   |        | Time       | r 2 and Ca                  | pture Cor | npare Unit |        |            |       |       |       |
| AUX2     | Auxiliary register2                               | 92H    | P42CC[1:0] |                             |           |            | C[1:0] |            |       |       |       |
| T2CON    | Timer 2 control                                   | C8H    | T2PS[2:0]  |                             |           | T2R[       | [1:0]  | - T2I[1:0] |       | [1:0] | 00H   |
| CCCON    | Compare/Capture<br>Control                        | C9H    | CCI3       | CCI2                        | CCI1      | CCI0       | CCF3   | CCF2       | CCF1  | CCF0  | 00H   |
| CCEN     | Compare/Capture<br>Enable register                | C1H    | -          | - COCAM1[2:0] - COCAM0[2:0] |           |            |        | 0]         | 00H   |       |       |
| CCEN2    | Compare/Capture<br>Enable 2 register              | D1H    | -          | - COCAM3[2:0] - COCAM2[2:0  |           |            |        | 0]         | 00H   |       |       |
| TL2      | Timer 2, low byte                                 | CCH    |            |                             |           | TL2        | [7:0]  |            |       |       | 00H   |
| TH2      | Timer 2, high byte                                | CDH    |            |                             |           | TH2        | [7:0]  |            |       |       | 00H   |
| CRCL     | Compare/Reload/<br>Capture register,<br>low byte  | CAH    |            | CRCL[7:0]                   |           |            |        |            | 00H   |       |       |
| CRCH     | Compare/Reload/<br>Capture register,<br>high byte | СВН    |            | CRCH[7:0]                   |           |            |        |            |       | 00H   |       |
| CCL1     | Compare/Capture<br>register 1, low<br>byte        | C2H    |            | CCL1[7:0]                   |           |            |        |            |       | 00H   |       |
| CCH1     | Compare/Capture<br>register 1, high<br>byte       | СЗН    |            | CCH1[7:0]                   |           |            |        |            |       | 00H   |       |
| CCL2     | Compare/Capture<br>register 2, low<br>byte        | C4H    |            | CCL2[7:0]                   |           |            |        |            | 00H   |       |       |
| CCH2     | Compare/Capture<br>register 2, high<br>byte       | C5H    |            | CCH2[7:0]                   |           |            |        |            | 00H   |       |       |
| CCL3     | Compare/Capture<br>register 3, low<br>byte        | C6H    |            | CCL3[7:0]                   |           |            |        |            | 00H   |       |       |
| ССНЗ     | Compare/Capture<br>register 3, high<br>byte       | C7H    | CCH3[7:0]  |                             |           |            |        | 00H        |       |       |       |



P42CC[1: 0] 00: Capture/Compare function on Port1.

- 01: Capture/Compare function on Port2
- 10: Capture/Compare function on Port4

11: reserved

| Mnemo | nic: T2COI | N |          |   |   |          | Addre | ess: C8H |
|-------|------------|---|----------|---|---|----------|-------|----------|
| 7     | 6          | 5 | 4        | 3 | 2 | 1        | 0     | Reset    |
|       | T2PS[2:0]  |   | T2R[1:0] |   | - | T2I[1:0] |       | 00H      |

T2PS[2:0]: Prescaler select bit:

Specifications subject to change without notice contact your sales representatives for the most recent information.ISSFD-M05935Ver.GSM59R16G602/2012



#### SM59R16G6/SM59R09G6/SM59R05G6 8-Bit Micro-controller 64KB/36KB/20KB with ISP Flash & 1KB RAM embedded

T2PS = 000 - timer 2 is clocked with the oscillator frequency. T2PS = 001 - timer 2 is clocked with 1/2 of the oscillator frequency. T2PS = 010 - timer 2 is clocked with 1/4 of the oscillator frequency. T2PS = 011 – timer 2 is clocked with 1/6 of the oscillator frequency. T2PS = 100 - timer 2 is clocked with 1/8 of the oscillator frequency. T2PS = 101 – timer 2 is clocked with 1/12 of the oscillator frequency. T2PS = 110 - timer 2 is clocked with 1/24 of the oscillator frequency.

- T2R[1:0]: Timer 2 reload mode selection
  - T2R[1:0] = 0X Reload disabled
  - T2R[1:0] = 10 Mode 0: Auto Reload

T2R[1:0] = 11 - Mode 1: T2EX Falling Edge Reload

- T2I[1:0]: Timer 2 input selection
  - T2I[1:0] = 00 Timer 2 stop

T2I[1:0] = 01 – Input frequency from prescaler (T2PS[2:0])

T2I[1:0] = 10 - Timer 2 is incremented by external signal at pin T2

T2I[1:0] = 11 – internal clock input is gated to the Timer 2

#### м

| Mnemonic: CCCON Addres |      |      |      |      |      |      |      | s: C9H |  |
|------------------------|------|------|------|------|------|------|------|--------|--|
| 7                      | 6    | 5    | 4    | 3    | 2    | 1    | 0    | Reset  |  |
| CCI3                   | CCI2 | CCI1 | CCI0 | CCF3 | CCF2 | CCF1 | CCF0 | 00H    |  |

CCI3: Compare/Capture 3 interrupt control bit.

- "1" is enable.
- CCI2: Compare/Capture 2 interrupt control bit. "1" is enable.
- CCI1: Compare/Capture 1 interrupt control bit. '1" is enable.
- CCI0: Compare/Capture 0 interrupt control bit. "1" is enable.

CCF3: Compare/Capture 3 flag set by hardware. This flag can be cleared by software.

CCF2: Compare/Capture 2 flag set by hardware. This flag can be cleared by software.

CCF1: Compare/Capture 1 flag set by hardware. This flag can be cleared by software.

CCF0: Compare/Capture 0 flag set by hardware. This flag can be cleared by software. Compare/Capture interrupt share T2 interrupt vector.

| Mnemo | nic: CCEI   | Ν |   |   |    |        | Addres | s: C1H |  |
|-------|-------------|---|---|---|----|--------|--------|--------|--|
| 7     | 6           | 5 | 4 | 3 | 2  | 1      | 0      | Reset  |  |
| -     | COCAM1[2:0] |   |   | - | CC | CAM0[2 | :0]    | 00H    |  |

COCAM1[2:0] 000: Compare/Capture disable

001: Compare enable but no output on Pin

- 010: Compare mode 0
  - 011: Compare mode 1
  - 100: Capture on rising edge at pin CC1
  - 101: Capture on falling edge at pin CC1
  - 110: Capture on both rising and falling edge at pin CC1
  - 111: Capture on write operation into register CC1
- 000: Compare/Capture disable COCAM0[2:0]
  - 001: Compare enable but no output on Pin
    - 010: Compare mode 0
    - 011: Compare mode 1
    - 100: Capture on rising edge at pin CC0
    - 101: Capture on falling edge at pin CC0
    - 110: Capture on both rising and falling edge at pin CC0
    - 111: Capture on write operation into register CC0



| Mnemonic:   | CCEN2                                                                                                                                                  |                                                                                                                                        |                                                                                                                                                       |                                                                                                                    |                                                                              |                                                 | Addres | s: D1H |
|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|-------------------------------------------------|--------|--------|
| 7           | 6                                                                                                                                                      | 5                                                                                                                                      | 4                                                                                                                                                     | 3                                                                                                                  | 2                                                                            | 1                                               | 0      | Reset  |
|             | COC                                                                                                                                                    | AM3[2:0                                                                                                                                | )]                                                                                                                                                    |                                                                                                                    |                                                                              | COCAM2[2:0                                      | ]      | 00H    |
| COCAM3[2:0] | 001: Co<br>010: Co<br>011: Co<br>100: Ca<br>101: Ca<br>111: Ca<br>000: Co<br>001: Co<br>010: Co<br>010: Co<br>100: Ca<br>100: Ca<br>101: Ca<br>101: Ca | ompare<br>ompare i<br>apture o<br>apture o<br>apture o<br>apture o<br>ompare<br>ompare<br>ompare i<br>apture o<br>apture o<br>apture o | enable b<br>mode 0<br>mode 1<br>n rising<br>n both ri-<br>n write o<br>Capture<br>enable b<br>mode 0<br>mode 1<br>n rising<br>n falling<br>n both ri- | edge at pin<br>edge at pin<br>sing and fa<br>peration int<br>disable<br>out no outpu<br>edge at pin<br>edge at pin | CC3<br>I CC3<br>Iling ed<br>to regis<br>ut on Pi<br>CC2<br>I CC2<br>Iling ed | ge at pin CC3<br>ter CC3<br>in<br>ge at pin CC2 |        |        |

#### 7.1. Timer 2 function

Timer 2 can operate as timer, event counter, or gated timer as explained later.

#### 7.1.1. Timer mode

In this mode Timer 2 can by incremented in various frequency that depending on the prescaler. The prescaler is selected by bit T2PS[2:0] in register T2CON.

#### 7.1.2. Event counter mode

In this mode, the timer is incremented when external signal T2 change value from 1 to 0. The T2 input is sampled in every cycle. Timer 2 is incremented in the cycle following the one in which the transition was detected.

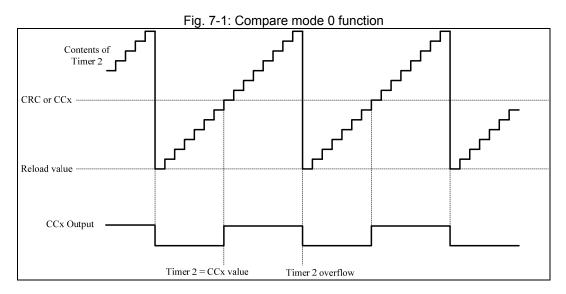
#### 7.1.3. Gated timer mode

In this mode, the internal clock which incremented timer 2 is gated by external signal T2.

#### 7.1.4. Reload of Timer 2

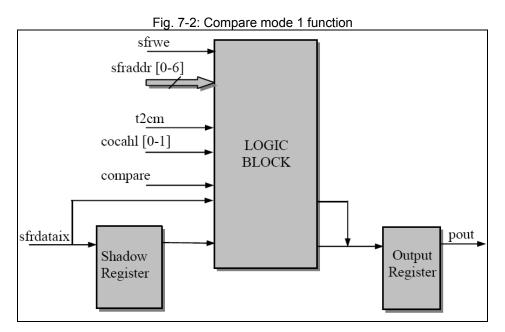
Reload (16-bit reload from the crc register) can be executed in the following two modes: Mode 0: Reload signal is generate by a Timer 2 overflows - auto reload Mode 1: Reload signal is generate by a negative transition at the corresponding input pin T2EX.

#### 7.2. **Compare function**


In the four independent comparators, the value stored in any compare/capture register is compared with the contents of the timer register. The compare modes 0 and 1 are selected by bit C0CAMx. In both compare modes, the results of comparison arrives at Port 1 within the same machine cycle in which the internal compare signal is activated.

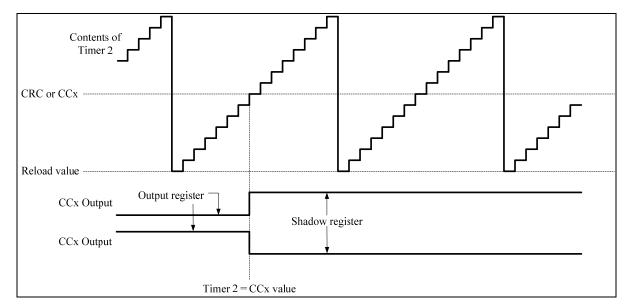
#### 7.2.1. Compare Mode 0

In mode 0, when the value in Timer 2 equals the value of the compare register, the output signal changes from low to high. It goes back to a low level on timer overflow. In this mode, writing to the port will have no effect, because the input line from the internal bus and the write-to-latch line are disconnected. The following figure illustrates the function of compare mode 0.


Specifications subject to change without notice contact your sales representatives for the most recent information. ISSFD-M059 37 Ver.G SM59R16G6 02/2012






#### 7.2.2. Compare Mode 1

In compare mode 1, the transition of the output signal can be determined by software. A timer 2 overflow causes no output change. In this mode, both transitions of a signal can be controlled. Fig. 7-2 shows a functional diagram of a register/port configuration in compare Mode 1. In compare Mode 1, the value is written first to the "Shadow Register", when compare signal is active, this value is transferred to the output register.





新茂國際科技股份有限公司 SyncMOS Technologies International,Inc.



### 7.3. Capture function

Actual timer/counter contents can be saved into registers CCx or CRC upon an external event (mode 0) or a software write operation (mode 1).

#### 7.3.1. Capture Mode 0

In mode 0, value capture of Timer 2 is executed when:

- (a) Rising edge on input CC0-CC3
- (b) Falling edge on input CC0-CC3

(c) Both rising and falling edge on input CC0-CC3

The contents of Timer 2 will be latched into the appropriate capture register.

### 7.3.2. Capture Mode 1

In mode 1, value capture of timer 2 is caused by writing any value into the low-order byte of the dedicated capture register. The value written to the capture register is irrelevant to this function. The contents of Timer 2 will be latched into the appropriate capture register.



### 8. Serial interface 0

There are one serial interfaces for data communication in SM59R16G6, they are the so called UART0.

As the conventional UART, the communication speed can be selected by configuring the baud rate in SFRs.

These two serial buffers consists of two separate registers, a transmit buffer and a receive buffer. Writing data to the SFR S0BUF sets this data in serial output buffer and starts the transmission. Reading from the S0BUF reads data from the serial receive buffer. The serial port can simultaneously transmit and receive data. It can also buffer 1 byte at receive, which prevents the receive data from being lost if the CPU reads the second byte before the transmission of the first byte is completed.

| Mnemonic | Description                                    | Direct | Bit 7       | Bit 6          | Bit 5       | Bit 4       | Bit 3       | Bit 2       | Bit 1       | Bit 0       | RESET |
|----------|------------------------------------------------|--------|-------------|----------------|-------------|-------------|-------------|-------------|-------------|-------------|-------|
|          |                                                |        |             | Serial in      | terface 0   | and 1       |             |             |             |             |       |
| PCON     | Power control                                  | 87H    | SMOD        | -              | -           | -           | -           | -           | STOP        | IDLE        | 40H   |
| AUX      | Auxiliary<br>register                          | 91H    | BRGS        | -              | P4SPI       | P1UR        | P4IIC       | -           | P2PW<br>M   | DPS         | 00H   |
| SOCON    | Serial Port 0<br>control register              | 98H    | SM0         | SM1            | SM20        | REN0        | TB80        | RB80        | Т10         | RI0         | 00H   |
| SORELL   | Serial Port 0<br>reload register<br>low byte   | AAH    | S0REL<br>.7 | SOREL<br>.6    | SOREL<br>.5 | SOREL<br>.4 | SOREL<br>.3 | S0REL<br>.2 | S0REL<br>.1 | SOREL<br>.0 | 00H   |
| SORELH   | Serial Port 0<br>reload register<br>high byte  | BAH    | -           | -              | -           | -           | -           | -           | SOREL<br>.9 | SOREL<br>.8 | 00H   |
| SOBUF    | Serial Port 0<br>data buffer                   | 99H    |             |                |             | S0BU        | IF[7:0]     |             |             |             | 00H   |
| PFCON    | Peripheral<br>Frequency<br>control<br>register | D9H    | -           | - SORELPS[1:0] |             |             | T1PS        | 6[1:0]      | T0PS[1:0]   |             | 00H   |

| Mnem | Mnemonic: AUX |       |      |       |   |       |     |       |  |  |  |  |
|------|---------------|-------|------|-------|---|-------|-----|-------|--|--|--|--|
| 7    | 6             | 5     | 4    | 3     | 2 | 1     | 0   | Reset |  |  |  |  |
| BRGS | S -           | P4SPI | P1UR | P4IIC | - | P2PWM | DPS | 00H   |  |  |  |  |

P1UR: P1UR = 0 – Serial interface 0 function on P3. P1UR = 1 – Serial interface 0 function on P1.

|       | Mnemo | Addres | ss: 98H |      |      |      |     |     |       |  |
|-------|-------|--------|---------|------|------|------|-----|-----|-------|--|
| 7 6 5 |       |        |         | 4    | 3    | 2    | 1   | 0   | Reset |  |
|       | SM0   | SM1    | SM20    | REN0 | TB80 | RB80 | TI0 | RI0 | 00H   |  |

SM0,SM1: Serial Port 0 mode selection.

| SM0 | SM1 | Mode |  |  |  |  |  |  |  |  |  |
|-----|-----|------|--|--|--|--|--|--|--|--|--|
| 0   | 0   | 0    |  |  |  |  |  |  |  |  |  |
| 0   | 1   | 1    |  |  |  |  |  |  |  |  |  |
| 1   | 0   | 2    |  |  |  |  |  |  |  |  |  |
| 1   | 1   | 3    |  |  |  |  |  |  |  |  |  |

The 4 modes in UART0, Mode 0 ~ 3, are explained later.

SM20: Enables multiprocessor communication feature

REN0: If set, enables serial reception. Cleared by software to disable reception.

TB80: The 9<sup>th</sup> transmitted data bit in modes 2 and 3. Set or cleared by the CPU depending on the function it performs such as parity check, multiprocessor communication etc.

Specifications subject to change without notice contact your sales representatives for the most recent information.

ISSFD-M059



- RB80: In modes 2 and 3, it is the 9<sup>th</sup> data bit received. In mode 1, if SM20 is 0, RB80 is the stop bit. In mode 0, this bit is not used. Must be cleared by software.
  - TI0: Transmit interrupt flag, set by hardware after completion of a serial transfer. Must be cleared by software.
  - RI0: Receive interrupt flag, set by hardware after completion of a serial reception. Must be cleared by software.

| Mnemonic: PFCON Address: D9H |   |              |   |      |        |      |     |       |  |  |
|------------------------------|---|--------------|---|------|--------|------|-----|-------|--|--|
| 7                            | 6 | 5            | 4 | 3    | 2      | 1    | 0   | Reset |  |  |
| -                            | - | SORELPS[1:0] |   | T1PS | 5[1:0] | TOPS | 00H |       |  |  |

S0RELPS[1:0]: S0REL Prescaler select

| SORELPS[1:0] | Prescaler |
|--------------|-----------|
| 00           | Fosc/64   |
| 01           | Fosc/32   |
| 10           | Fosc/16   |
| 11           | Fosc/8    |

T1PS[1:0]: Timer1 Prescaler select

| • |           | 01001     |  |  |  |  |
|---|-----------|-----------|--|--|--|--|
|   | T1PS[1:0] | Prescaler |  |  |  |  |
|   | 00        | Fosc/12   |  |  |  |  |
|   | 01        | Fosc      |  |  |  |  |
|   | 10        | Fosc/96   |  |  |  |  |
|   | 11        | reserved  |  |  |  |  |

#### 8.1. Serial interface 0

The Serial Interface 0 can operate in the following 4 modes:

| SM0 | SM1 | Mode | Description    | Board Rate         |
|-----|-----|------|----------------|--------------------|
| 0   | 0   | 0    | Shift register | Fosc/12            |
| 0   | 1   | 1    | 8-bit UART     | Variable           |
| 1   | 0   | 2    | 9-bit UART     | Fosc/32 or Fosc/64 |
| 1   | 1   | 3    | 9-bit UART     | Variable           |

Here Fosc is the crystal or oscillator frequency.

#### 8.1.1. Mode 0

Pin RXD0 serves as input and output. TXD0 outputs the shift clock. 8 bits are transmitted with LSB first. The baud rate is fixed at 1/12 of the crystal frequency. Reception is initialized in Mode 0 by setting the flags in S0CON as follows: RI0 = 0 and REN0 = 1. In the other modes, a start bit when REN0 = 1 starts receiving serial data.

| t_baud_clk=fclk/12 |      |
|--------------------|------|
| write_to_SBUF      | Λ    |
| t_start            |      |
| t_shift_clk        |      |
| rxd                | \ D0 |
| txd                |      |
| ti                 |      |

Fig. 8-1: Transmit mode 0 for Serial 0

Specifications subject to change without notice contact your sales representatives for the most recent information.ISSFD-M05941Ver.GSM59R16G602/2012



| r_baud_clk=fclk/12 | \ | <u> </u> | <u> </u> | <u> </u>      | <u> </u> | $\Lambda$ | <u> </u> | <u> </u> | <u> </u> | <u> </u> |
|--------------------|---|----------|----------|---------------|----------|-----------|----------|----------|----------|----------|
| write_to_S0CON     | Л |          |          |               |          |           |          |          |          |          |
| riO                |   |          |          |               |          |           |          |          |          |          |
| r_start            |   |          |          |               |          |           |          |          |          |          |
| shift              |   | Λ        |          |               | Λ        | Λ         |          | Λ        | Λ        | Λ        |
| rxd0i              |   |          | -0       | $\rightarrow$ |          |           | -0       |          |          |          |
| txd0               |   |          |          |               |          |           |          |          |          |          |

Fig. 8-2: Receive mode 0 for Serial 0

#### 8.1.2. Mode 1

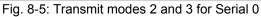
Here Pin RXD0 serves as input, and TXD0 serves as serial output. No external shift clock is used, 10 bits are transmitted: a start bit (always 0), 8 data bits (LSB first), and a stop bit (always 1). On receive, a start bit synchronizes the transmission, 8 data bits are available by reading S0BUF, and a stop bit sets the flag RB80 in the SFR S0CON. In mode 1, either internal baud rate generator or timer 1 can be use to specify the desired baud rate.

| t_baud_clk    | <u> </u> | <u>`</u> |     |       |       | <u> </u> | <u> </u> | Λ.    | <u> </u> | <u> </u> | <u>`</u> |
|---------------|----------|----------|-----|-------|-------|----------|----------|-------|----------|----------|----------|
| write_to_SBUF | <br>\    |          |     |       |       |          |          |       |          |          |          |
| t_start       |          |          |     |       |       |          |          |       |          |          |          |
| t_shift_clk   |          | Λ        | _Λ  |       |       |          |          |       | Λ        |          |          |
| txd           |          | / D0     | ) D | 1 ( D | 2 X D | 3 ( D    | 4 ( D    | 5 X D | 6 ( D    | 7 ]      | Stop     |
| ti            |          |          |     |       |       |          |          |       |          |          |          |

Fig. 8-3: Transmit mode 1 for Serial 0

|               | <u></u> |       |    |      |      |      |   |   |   |    |         |
|---------------|---------|-------|----|------|------|------|---|---|---|----|---------|
| receive_clock |         |       | \  |      |      |      |   |   |   | _Λ |         |
| rxd           |         | Start | D0 | ( D1 | ) D2 | ( D3 | X | X | X | X  |         |
| r_start       |         |       |    |      |      |      |   |   |   |    |         |
| ri            |         |       |    |      |      |      |   |   |   |    | <u></u> |
| rxd_sample    |         |       |    |      |      |      |   |   |   |    |         |
| shift         |         |       |    |      |      |      |   |   |   |    |         |
|               |         |       |    |      |      |      |   |   |   |    |         |

Fig. 8-4: Receive mode 1 for Serial 0


#### 8.1.3. Mode 2

This mode is similar to Mode 1, but with two differences. The baud rate is fixed at 1/32 (SMOD=1) or 1/64(SMOD=0) of oscillator frequency, and 11 bits are transmitted or received: a start bit (0), 8 data bits (LSB first), a programmable Bit 9, and a stop bit (1). Bit 9 can be used to control the parity of the serial interface: at transmission, bit TB80 in S0CON is output as Bit 9, and at receive, Bit 9 affects RB80 in SFR S0CON.

#### 8.1.4. Mode 3

The only difference between Mode 2 and Mode 3 is that: in Mode 3, either internal baud rate generator or timer 1 can be use to specify baud rate.

| t_baud_clk    | $\square$ | $ \land \land$ |      |      |      |      |      |      |        |                |   |      |
|---------------|-----------|----------------|------|------|------|------|------|------|--------|----------------|---|------|
| write_to_SBUF |           |                |      |      |      |      |      |      |        |                |   |      |
| t_start       |           |                |      |      |      |      |      |      |        |                |   |      |
| t_shift_clk   | /         | \/             | Λ    |      | Λ    | Λ    | Λ    | Λ    | Λ      |                | Λ |      |
| txd           |           | \/             | D0 ( | D1 ( | D2 ( | D3 ( | D4 ( | D5 ( | D6 ( D | 7 <b>( TB8</b> |   | Stop |
| ti            |           |                |      |      |      |      |      |      |        |                |   |      |



Specifications subject to change without notice contact your sales representatives for the most recent information.ISSFD-M05942Ver.GSM59R16G602/2012



新茂國際科技股份有限公司 SyncMOS Technologies International,Inc.

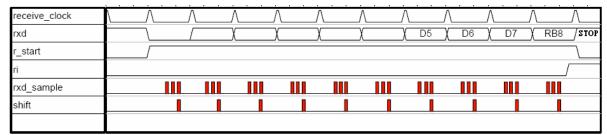



Fig. 8-6: Receive modes 2 and 3 for Serial 0

### 8.2. Multiprocessor communication of Serial Interface 0

The feature of receiving 9 bits in Modes 2 and 3 of Serial Interface 0 can be used for multiprocessor communication. In this case, the slave processors have bit SM20 in SOCON. When the master processor outputs slave's address, it sets the Bit 9 to 1, causing a serial port receive interrupt in all the slaves. The slave processors compare the received byte with their network address. If matched, the addressed slave will clear SM20 and receive the rest of the message, while other slaves will leave SM20 bit unaffected and ignore this message. After addressing the slave, the host will output the rest of the message with the Bit 9 set to 0, so no serial port receive interrupt will be generated in unselected slaves.

#### 8.3. Baud rate generator

#### 8.3.1. Serial interface 0 modes 1 and 3

(a) When BRGS = 0 (in SFR AUX):

T1PS[1:0] = 00

Baud Rate = 
$$\frac{2^{\text{SMOD}} \times F_{osc}}{32 \times 12 \times (256 - \text{TH1})}$$

T1PS[1:0] = 01

Baud Rate = 
$$\frac{2^{\text{SMOD}} \times F_{OSC}}{32 \times (256 - \text{TH1})}$$

T1PS[1:0] = 10

Baud Rate = 
$$\frac{2^{\text{SMOD}} \times F_{osc}}{32 \times 96 \times (256 - \text{TH1})}$$

(b) When BRGS = 1 (in SFR AUX):

SORELPS[1:0] = 00

Baud Rate = 
$$\frac{2^{\text{SMOD}} \times F_{\text{OSC}}}{64 \times (2^{10} - \text{SOREL})}$$

SORELPS[1:0] = 01

Baud Rate = 
$$\frac{2^{\text{SMOD}} \times F_{\text{OSC}}}{32 \times (2^{10} - \text{SOREL})}$$

SORELPS[1:0] = 10

Baud Rate = 
$$\frac{2^{\text{SMOD}} \times F_{\text{OSC}}}{16 \times (2^{10} - \text{SOREL})}$$

SORELPS[1:0] = 11

Baud Rate = 
$$\frac{2^{\text{SMOD}} \times F_{\text{OSC}}}{8 \times (2^{10} - \text{SOREL})}$$

Specifications subject to change without notice contact your sales representatives for the most recent information.ISSFD-M05943Ver.GSM59R16G602/2012



### 9. Watchdog timer

The Watch Dog Timer (WDT) is an 8-bit free-running counter that generate reset signal if the counter overflows. The WDT is useful for systems which are susceptible to noise, power glitches, or electronics discharge which causing software dead loop or runaway. The WDT function can help user software recover from abnormal software condition. The WDT is different from Timer0, Timer1 and Timer2 of general 8052. To prevent a WDT reset can be done by software periodically clearing the WDT counter. User should check WDTF bit of WDTC register whenever un-predicted reset happened. After an external reset the watchdog timer is disabled and all registers are set to zeros.

The watchdog timer has a free running on-chip RC oscillator (250KHz). The WDT will keep on running even after the system clock has been turned off (for example, in sleep mode). During normal operation or sleep mode, a WDT time-out (if enabled) will cause the MCU to reset. The WDT can be enabled or disabled any time during the normal mode. Please refer the WDTE bit of WDTC register. The default WDT time-out period is approximately 16.38ms (WDTM [3:0] = 0100b).

The WDT has selectable divider input for the time base source clock. To select the divider input, the setting of bit3 ~ bit0 (WDTM [3:0]) of Watch Dog Timer Control Register (WDTC) should be set accordingly.

> $WDTCLK = \frac{250 \text{KHz}}{2^{\text{WDTM}}}$ 256 Watchdog reset time = WDTCL K

| WDTM [3:0] | Divider<br>(250 KHz RC oscillator in) | Time period @ 250KHz |
|------------|---------------------------------------|----------------------|
| 0000       | 1                                     | 1.02ms               |
| 0001       | 2                                     | 2.05ms               |
| 0010       | 4                                     | 4.10ms               |
| 0011       | 8                                     | 8.19ms               |
| 0100       | 16                                    | 16.38ms (default)    |
| 0101       | 32                                    | 32.77ms              |
| 0110       | 64                                    | 65.54ms              |
| 0111       | 128                                   | 131.07ms             |
| 1000       | 256                                   | 262.14ms             |
| 1001       | 512                                   | 524.29ms             |
| 1010       | 1024                                  | 1.05s                |
| 1011       | 2048                                  | 2.10s                |
| 1100       | 4096                                  | 4.19s                |
| 1101       | 8192                                  | 8.39s                |
| 1110       | 16384                                 | 16.78s               |
| 1111       | 32768                                 | 33.55s               |

Table 9.1 WDT time-out period

When MCU is reset, the MCU will be read WDTEN control bit status. When WDTEN bit is set to 1, the watchdog function will be disabled no matter what the WDTE bit status is. When WDTEN bit is clear to 0, the watchdog function will be enabled if WDTE bit is set to 1 by program. User can to set WDTEN on the writer or ISP.

The program can enable the WDT function by programming 1 to the WDTE bit premise that WDTEN control bit is clear to 0. After WDTE set to 1, the 8 bit-counter starts to count with the selected time base source clock which set by WDTM [3:0]. It will generate a reset signal when overflows. The WDTE bit will be cleared to 0 automatically when MCU been reset, either hardware reset or WDT reset.

Once the watchdog is started it cannot be stopped. User can refreshed the watchdog timer to zero by writing 0x55 to Watch Dog Timer refresh Key (WDTK) register. This will clear the content of the 8-bit counter and let the counter re-start to count from the beginning. The watchdog timer must be refreshed regularly to prevent reset request signal from

Specifications subject to change without notice contact your sales representatives for the most recent information. ISSFD-M059 44 Ver.G SM59R16G6 02/2012



00H

becoming active.

When Watchdog timer is overflow, the WDTF flag will set to one and automatically reset MCU. The WDTF flag can be clear by software or external reset or power on reset.

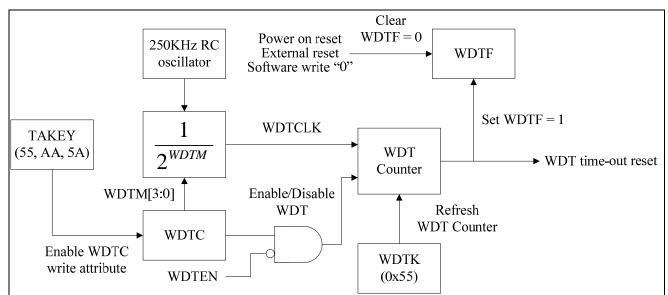



Fig. 9-1: Watchdog timer block diagram

| Mnemonic | Description                        | Direct  | Bit 7 | Bit 6 | Bit 5    | Bit 4 | Bit 3   | Bit 2   | Bit 1          | Bit 0 | RESET |
|----------|------------------------------------|---------|-------|-------|----------|-------|---------|---------|----------------|-------|-------|
|          |                                    |         |       | Watch | dog Time | r     |         |         |                |       |       |
| TAKEY    | Time Access Key<br>register        | F7H     |       |       |          | TAKE  | Y [7:0] |         |                |       | 00H   |
| WDTC     | Watchdog timer<br>control register | B6H     |       | -     | WDTE     | -     |         | WDT     | И [3:0]        |       | 04H   |
| WDTK     | Watchdog timer<br>refresh key      | B7H     |       |       |          | WDT   | K[7:0]  |         |                |       | 00H   |
| RSTS     | Reset Status Flag<br>register      | A1H     |       |       |          | PDRF  | WDTF    | SWRF    | LVRF           | PORF  | 00H   |
|          | Mnemonic<br>7                      | : TAKEY | 5     | 4     | 3        | 2     | 1       | Address | : F7H<br>Reset |       |       |

**TAKEY** [7:0]

Watchdog timer control register (WDTC) is read-only by default; software must write three specific values 55H, AAH and 5AH sequentially to the TAKEY register to enable the WDTC write attribute. That is:

MOV TAKEY, #55H MOV TAKEY, #AAH MOV TAKEY, #5AH

| Mnemo | nic: WD1 | C    |   |   |      |          | Addre | ess: B6H |
|-------|----------|------|---|---|------|----------|-------|----------|
| 7     | 6        | 5    | 4 | 3 | 2    | 1        | 0     | Reset    |
| -     | -        | WDTE | - |   | WDTM | VI [3:0] |       | 04H      |

WDTE: Control bit used to enable Watchdog timer.

The WDTE bit can be used only if WDTEN is "0". If the WDTEN bit is "0", then WDT can be disabled / enabled by the WDTE bit.

Specifications subject to change without notice contact your sales representatives for the most recent information.ISSFD-M05945Ver.GSM59R16G602/2012



0: Disable WDT.

1: Enable WDT.

The WDTE bit is not used if WDTEN is "1". That is, if the WDTEN bit is "1", WDT is always disabled no matter what the WDTE bit status is. The WDTE bit can be read and written.

WDTM [3:0]: WDT clock source divider bit. Please see table 9.1 to reference the WDT time-out period.

| Mnemonic:  | WDTK |
|------------|------|
| winemonic: | WDIN |

| Mnemo | nic: WDT | ĸ |     |                     |   |   | Addre | ess: B7H |
|-------|----------|---|-----|---------------------|---|---|-------|----------|
| 7     | 6        | 5 | 4   | 3                   | 2 | 1 | 0     | Reset    |
|       |          |   | WDT | <sup>-</sup> K[7:0] |   |   |       | 00H      |

WDTK: Watchdog timer refresh key.

A programmer must write 0x55 into WDTK register, and then the watchdog timer will be cleared to zero.

For example, if enable WDT and select time-out reset period is 327.68ms. First, programming the information block OP3 bit7 WDTEN to "0". Secondly. MOV TAKEY, #55H MOV TAKEY, #AAH MOV TAKEY, #5AH : enable WDTC write attribute. ; Set WDTM [3:0] = 1000b. Set WDTE =1 to enable WDT MOV WDTC, #28H ; function. ; Clear WDT timer to 0. MOV WDTK, #55H

| Mnemo | nic: RSTS | 3 |      |      |      |      | Addre | ss: A1H |
|-------|-----------|---|------|------|------|------|-------|---------|
| 7     | 6         | 5 | 4    | 3    | 2    | 1    | 0     | Reset   |
| -     | -         | - | PDRF | WDTF | SWRF | LVRF | PORF  | 00H     |

WDTF: Watchdog timer reset flag.

When MCU is reset by watchdog, WDTF flag will be set to one by hardware. This flag clear by software or external reset or power on reset.



### 10. Interrupt

The SM59R16G6 provides 10 interrupt sources with four priority levels. Each source has its own request flag(s) located in a special function register. Each interrupt requested by the corresponding flag could individually be enabled or disabled by the enable bits in SFR's IEN0, IEN1.

When the interrupt occurs, the engine will vector to the predetermined address as shown in Table 10.1. Once interrupt service has begun, it can be interrupted only by a higher priority interrupt. The interrupt service is terminated by a return from instruction RETI. When an RETI is performed, the processor will return to the instruction that would have been next when interrupt occurred.

When the interrupt condition occurs, the processor will also indicate this by setting a flag bit. This bit is set regardless of whether the interrupt is enabled or disabled. Each interrupt flag is sampled once per machine cycle, and then samples are polled by hardware. If the sample indicates a pending interrupt when the interrupt is enabled, then interrupt request flag is set. On the next instruction cycle the interrupt will be acknowledged by hardware forcing an LCALL to appropriate vector address.

Interrupt response will require a varying amount of time depending on the state of microcontroller when the interrupt occurs. If microcontroller is performing an interrupt service with equal or greater priority, the new interrupt will not be invoked. In other cases, the response time depends on current instruction. The fastest possible response to an interrupt is 7 machine cycles. This includes one machine cycle for detecting the interrupt and six cycles for perform the LCALL.

| Table 10                             | D-1: Interrupt vectors      |                                        |
|--------------------------------------|-----------------------------|----------------------------------------|
| Interrupt Request Flags              | Interrupt Vector<br>Address | Interrupt Number<br>*(use Keil C Tool) |
| IE0 – External interrupt 0           | 0003H                       | 0                                      |
| TF0 – Timer 0 interrupt              | 000BH                       | 1                                      |
| IE1 – External interrupt 1           | 0013H                       | 2                                      |
| TF1 – Timer 1 interrupt              | 001BH                       | 3                                      |
| RI0/TI0 – Serial channel 0 interrupt | 0023H                       | 4                                      |
| TF2/EXF2 – Timer 2 interrupt         | 002BH                       | 5                                      |
| PWMIF – PWM interrupt                | 0043H                       | 8                                      |
| SPIIF – SPI interrupt                | 004BH                       | 9                                      |
| LVIIF – Low Voltage Interrupt        | 0063H                       | 12                                     |
| IICIF – IIC interrupt                | 006BH                       | 13                                     |

\*See Keil C about C51 User's Guide about Interrupt Function description

| Mnemonic | Description                    | Direct | Bit 7 | Bit 6 | Bit 5  | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | RESET |
|----------|--------------------------------|--------|-------|-------|--------|-------|-------|-------|-------|-------|-------|
|          |                                |        |       | Int   | errupt |       |       |       |       |       |       |
| IEN0     | Interrupt Enable<br>0 register | A8H    | EA    | -     | ET2    | ES0   | ET1   | EX1   | ET0   | EX0   | 00H   |
| IEN1     | Interrupt Enable<br>1 register | B8H    | EXEN2 | -     | IEIIC  | IELVI | -     | -     | IESPI | IEPWM | 00H   |
| IRCON    | Interrupt request<br>register  | СОН    | EXF2  | TF2   | IICIF  | LVIIF | -     | -     | SPIIF | PWMIF | 00H   |
| IP0      | Interrupt priority<br>level 0  | A9H    | -     | -     | IP0.5  | IP0.4 | IP0.3 | IP0.2 | IP0.1 | IP0.0 | 00H   |
| IP1      | Interrupt priority<br>level 1  | B9H    | -     | -     | IP1.5  | IP1.4 | IP1.3 | IP1.2 | IP1.1 | IP1.0 | 00H   |

Specifications subject to change without notice contact your sales representatives for the most recent information.ISSFD-M05947Ver.GSM59R16G602/2012



Interrupt Enable 0 register(IEN0)

| Mnemo | onic: IEN0 |           |             |             |            |              | Addre     | ss: A8H |
|-------|------------|-----------|-------------|-------------|------------|--------------|-----------|---------|
| 7     | 6          | 5         | 4           | 3           | 2          | 1            | 0         | Reset   |
| EA    | -          | ET2       | ES0         | ET1         | EX1        | ET0          | EX0       | 00H     |
|       | EA: EA=0   | - Disable | all interru | upt.        |            |              |           |         |
|       | EA=1       | - Enable  | all interru | pt.         |            |              |           |         |
| E     | ET2: ET2=  | 0 – Disab | le Timer 2  | overflow    | or externa | al reload ir | nterrupt. |         |
|       | ET2=       | 1 – Enabl | e Timer 2   | overflow of | or externa | l reload in  | iterrupt. |         |
| E     | ES0: ES0=  | 0 – Disab | le Serial c | hannel 0    | interrupt. |              |           |         |
|       | ES0=       | 1 – Enabl | e Serial cl | hannel 0 i  | nterrupt.  |              |           |         |
| E     | ET1: ET1=  | 0 – Disab | le Timer 1  | overflow    | interrupt. |              |           |         |
|       | ET1=       | 1 – Enabl | e Timer 1   | overflow i  | nterrupt.  |              |           |         |
| E     | EX1: EX1=  | 0 – Disab | le externa  | l interrupt | 1.         |              |           |         |
|       | EX1=       | 1 – Enabl | e external  | interrupt   | 1.         |              |           |         |
| E     | ET0: ET0=0 |           |             |             |            |              |           |         |
|       | ET0=       | 1 – Enabl | e Timer 0   | overflow i  | nterrupt.  |              |           |         |
| E     | EX0: EX0=  | 0 – Disab | le externa  | l interrupt | 0.         |              |           |         |
|       | EX0=       | 1 – Enabl | e external  | interrupt   | 0.         |              |           |         |
|       |            |           |             |             |            |              |           |         |

Interrupt Enable 1 register(IEN1)

| Mnemonio         | :: IEN1     |            |            |             |            |              | Addres | s: B8H |
|------------------|-------------|------------|------------|-------------|------------|--------------|--------|--------|
| 7                | 6           | 5          | 4          | 3           | 2          | 1            | 0      | Reset  |
| EXEN2            | -           | IEIIC      | IELVI      | -           | -          | IESPI        | IEPWM  | 00H    |
| EXEN2            | : Timer 2   | reload in  | terrupt er | nable.      |            |              |        |        |
|                  | EXEN2       | = 0 – Dis  | able Time  | er 2 exteri | nal reload | l interrupt. |        |        |
|                  |             |            |            | er 2 extern | al reload  | interrupt.   |        |        |
| IEIIC            |             | rrupt enal |            |             |            |              |        |        |
|                  |             | = 0 – Disa |            | •           |            |              |        |        |
|                  | IEIICS      | = 1 – Ena  | ble IIC in | terrupt.    |            |              |        |        |
| IELVI            |             | rrupt ena  |            |             |            |              |        |        |
|                  |             | 0 – Disal  |            |             |            |              |        |        |
|                  |             | 1 – Enab   |            | errupt.     |            |              |        |        |
| IESPI            |             | errupt ena |            |             |            |              |        |        |
|                  |             | 0 – Disa   |            | •           |            |              |        |        |
|                  |             | 1 – Enat   |            | terrupt.    |            |              |        |        |
| IEPWM            |             | terrupt ei |            |             |            |              |        |        |
|                  |             |            |            | M interrup  |            |              |        |        |
|                  | IEPWI       | I = 1 - En | able PWI   | A interrup  | t.         |              |        |        |
| unt request rea  | nictor/ID(  |            |            |             |            |              |        |        |
| rupt request reg | JISIEI (IRC | JUN)       |            |             |            |              |        |        |

| Mnemo | nic: IRCO | N     |       |   |   |       | Addre | ss: C0H |   |
|-------|-----------|-------|-------|---|---|-------|-------|---------|---|
| 7     | 6         | 5     | 4     | 3 | 2 | 1     | 0     | Reset   |   |
| EXF2  | TF2       | IICIF | LVIIF | - | - | SPIIF | PWMIF | 00H     | ĺ |

EXF2: Timer 2 external reloads flag. Must be cleared by software.

TF2: Timer 2 overflows flag. Must be cleared by software.

IICIF: IIC interrupt flag.

LVIIF: LVI interrupt flag.

SPIIF: SPI interrupt flag.

PWMIF: PWM interrupt flag. Must be cleared by software.



#### 10.1. Priority level structure

All interrupt sources are combined in groups:

| Table 10-2: Priority level groups |               |  |  |  |  |  |  |
|-----------------------------------|---------------|--|--|--|--|--|--|
| Grou                              | ips           |  |  |  |  |  |  |
| External interrupt 0              | PWM interrupt |  |  |  |  |  |  |
| Timer 0 interrupt                 | SPI interrupt |  |  |  |  |  |  |
| External interrupt 1              | -             |  |  |  |  |  |  |
| Timer 1 interrupt                 | -             |  |  |  |  |  |  |
| Serial channel 0 interrupt        | LVI interrupt |  |  |  |  |  |  |
| Timer 2 interrupt                 | IIC interrupt |  |  |  |  |  |  |

Each group of interrupt sources can be programmed individually to one of four priority levels by setting or clearing one bit in the special function register IP0 and one in IP1. If requests of the same priority level will be received simultaneously, an internal polling sequence determines which request is serviced first.

| Mnemo |   | Addres | s: A9H |       |       |       |       |       |
|-------|---|--------|--------|-------|-------|-------|-------|-------|
| 7     | 6 | 5      | 4      | 3     | 2     | 1     | 0     | Reset |
| -     | - | IP0.5  | IP0.4  | IP0.3 | IP0.2 | IP0.1 | IP0.0 | 00H   |
|       |   |        |        |       |       |       |       |       |

| Mnemonic: IP1 |   |   |       |       |       |       |       | Addres | s: B9H |
|---------------|---|---|-------|-------|-------|-------|-------|--------|--------|
|               | 7 | 6 | 5     | 4     | 3     | 2     | 1     | 0      | Reset  |
|               | - | - | IP1.5 | IP1.4 | IP1.3 | IP1.2 | IP1.1 | IP1.0  | 00H    |

#### Table 10-3: Priority levels

| IP1.x | IP0.x | Priority Level   |
|-------|-------|------------------|
| 0     | 0     | Level0 (lowest)  |
| 0     | 1     | Level1           |
| 1     | 0     | Level2           |
| 1     | 1     | Level3 (highest) |

#### Table 10-4: Groups of priority

| Bit          | Gro                        | oup           |
|--------------|----------------------------|---------------|
| IP1.0, IP0.0 | External interrupt 0       | PWM interrupt |
| IP1.1, IP0.1 | Timer 0 interrupt          | SPI interrupt |
| IP1.2, IP0.2 | External interrupt 1       | -             |
| IP1.3, IP0.3 | Timer 1 interrupt          | -             |
| IP1.4, IP0.4 | Serial channel 0 interrupt | LVI interrupt |
| IP1.5, IP0.5 | Timer 2 interrupt          | IIC interrupt |



| Table 10-5: Polling sequence |                  |  |  |  |  |  |  |  |
|------------------------------|------------------|--|--|--|--|--|--|--|
| Interrupt source             | Sequence         |  |  |  |  |  |  |  |
| External interrupt 0         | 1                |  |  |  |  |  |  |  |
| PWM interrupt                |                  |  |  |  |  |  |  |  |
| Timer 0 interrupt            | σ                |  |  |  |  |  |  |  |
| SPI interrupt                | ollin            |  |  |  |  |  |  |  |
| External interrupt 1         | s Di             |  |  |  |  |  |  |  |
| Timer 1 interrupt            | equ              |  |  |  |  |  |  |  |
| Serial channel 0 interrupt   | Polling sequence |  |  |  |  |  |  |  |
| LVI interrupt                | ĕ                |  |  |  |  |  |  |  |
| Timer 2 interrupt            | ↓ ↓              |  |  |  |  |  |  |  |
| IIC interrupt                | •                |  |  |  |  |  |  |  |

Table 10-5. Pollin



### 11. Power Management Unit

Power management unit serves two power management modes, IDLE and STOP, for the users to do power saving function.

| Mnemo | nic: PCO | N |   |   |   |      | Addre | ess: 87H |  |
|-------|----------|---|---|---|---|------|-------|----------|--|
| 7     | 6        | 5 | 4 | 3 | 2 | 1    | 0     | Reset    |  |
| SMOD  | -        | - | - | - | - | STOP | IDLE  | 40H      |  |

STOP: Stop mode control bit. Setting this bit turning on the Stop Mode. Stop bit is always read as 0IDLE: Idle mode control bit. Setting this bit turning on the Idle Mode. Idle bit is always read as 0

#### 11.1. Idle mode

Setting the IDLE bit of PCON register invokes the IDLE mode. The IDLE mode leaves internal clocks and peripherals running. Power consumption drops because the CPU is not active. The CPU can exit the IDLE state with any interrupts or a reset.

#### 11.2. Stop mode

Setting the STOP bit of PCON register invokes the STOP mode. All internal clocking in this mode is turn off. The CPU will exit this state from a no-clocked interrupt (external INT0/1, LVI) or a reset (WDT and LVR) condition. Internally generated interrupts (timer, serial port ...) have no effect on stop mode since they require clocking activity.



### 12. Pulse Width Modulation (PWM)

SM59R16G6 provides four-channel PWM outputs. The interrupt vector is 43H.

| Mnemonic | Description                        | Direct | Bit 7 | Bit 6      | Bit 5 | Bit 4 | Bit 3      | Bit 2      | Bit 1      | Bit 0      | RESET |
|----------|------------------------------------|--------|-------|------------|-------|-------|------------|------------|------------|------------|-------|
|          | -                                  |        |       |            | -     |       |            |            | -          |            |       |
| AUX      | Auxiliary register                 | 91H    | BRGS  | -          | P4SPI | P1UR  | P4IIC      | -          | P2PW<br>M  | DPS        | 00H   |
| PWMC     | PWM Control<br>register            | B5H    | P     | WMCS[2:    | 0]    | -     | PWM3E<br>N | PWM2E<br>N | PWM1E<br>N | PWM0E<br>N | 00H   |
| PWMD0H   | PWM 0 Data<br>register high byte   | BCH    | PWMP0 | -          | -     | -     | -          | -          | PWM        | 00[9:8]    | 00H   |
| PWMD0L   | PWM 0 Data<br>register low byte    | BDH    |       |            |       | PWM   | D0[7:0]    |            |            |            | 00H   |
| PWMD1H   | PWM 1 Data<br>register high byte   | BEH    | PWMP1 | -          | -     | -     | -          | -          | PWM        | D1[9:8]    | 00H   |
| PWMD1L   | PWM 1 Data<br>register low byte    | BFH    |       | PWMD1[7:0] |       |       |            | 00H        |            |            |       |
| PWMD2H   | PWM 2 Data<br>register high byte   | B1H    | PWMP2 | -          | -     | -     | -          | -          | PWM        | D2[9:8]    | 00H   |
| PWMD2L   | PWM 2 Data<br>register low byte    | B2H    |       |            |       | PWM   | D2[7:0]    |            |            |            | 00H   |
| PWMD3H   | PWM 3 Data<br>register high byte   | B3H    | PWMP3 | -          | -     | -     | -          | -          | PWM        | 03[9:8]    | 00H   |
| PWMD3L   | PWM 3 Data<br>register low byte    | B4H    |       |            |       | PWM   | D3[7:0]    |            |            |            | 00H   |
| PWMMDH   | PWM Max Data<br>register high byte | CEH    | -     | -          | -     | -     | -          | -          | PWMN       | /ID[9:8]   | 00H   |
| PWMMDL   | PWM Max Data<br>register low byte  | CFH    |       |            |       | PWM   | /ID[7:0]   |            |            |            | FFH   |

| Mnemor | nic: AUX |       |      |       |   |       | Addre | ss: 91H |  |
|--------|----------|-------|------|-------|---|-------|-------|---------|--|
| 7      | 6        | 5     | 4    | 3     | 2 | 1     | 0     | Reset   |  |
| BRGS   | -        | P4SPI | P1UR | P4IIC | - | P2PWM | DPS   | 00H     |  |

P2PWM : P2PWM = 0 - PWM function on P4. P2PWM = 1 - PWM function on P2.

| Mnem | nonic: PWMC |   |   |        |        |        | Addres | s: B5H |  |
|------|-------------|---|---|--------|--------|--------|--------|--------|--|
| 7    | 6           | 5 | 4 | 3      | 2      | 1      | 0      | Reset  |  |
|      | PWMCS[2:0]  |   | - | PWM3EN | PWM2EN | PWM1EN | PWM0EN | 00H    |  |

PWMCS[2:0]: PWM clock select.

| PWMCS [2:0] | Mode                                          |  |  |  |  |  |  |  |
|-------------|-----------------------------------------------|--|--|--|--|--|--|--|
| 000         | Fosc                                          |  |  |  |  |  |  |  |
| 001         | Fosc/2                                        |  |  |  |  |  |  |  |
| 010         | Fosc/4                                        |  |  |  |  |  |  |  |
| 011         | Fosc/6                                        |  |  |  |  |  |  |  |
| 100         | Fosc/8                                        |  |  |  |  |  |  |  |
| 101         | Fosc/12                                       |  |  |  |  |  |  |  |
| 110         | Timer 0 overflow                              |  |  |  |  |  |  |  |
| 111         | Timer 0 external input (P3.4/T0)              |  |  |  |  |  |  |  |
|             | 000<br>001<br>010<br>011<br>100<br>101<br>110 |  |  |  |  |  |  |  |

PWM3EN: PWM channel 3 enable control bit. PWM3EN = 1 – PWM channel 3 enable.

Specifications subject to change without notice contact your sales representatives for the most recent information.

ISSFD-M059

00H



 $\begin{array}{l} \mathsf{PWM3EN} = \mathsf{0} - \mathsf{PWM} \text{ channel 3 disable.} \\ \mathsf{PWM2EN}: \mathsf{PWM} \text{ channel 2 enable control bit.} \\ \mathsf{PWM2EN} = \mathsf{1} - \mathsf{PWM} \text{ channel 2 enable.} \\ \mathsf{PWM2EN} = \mathsf{0} - \mathsf{PWM} \text{ channel 2 disable.} \\ \mathsf{PWM1EN}: \mathsf{PWM} \text{ channel 1 enable control bit.} \\ \mathsf{PWM1EN} = \mathsf{1} - \mathsf{PWM} \text{ channel 1 enable.} \\ \mathsf{PWM1EN} = \mathsf{0} - \mathsf{PWM} \text{ channel 1 disable.} \\ \mathsf{PWM0EN}: \mathsf{PWM0} \text{ enable control bit.} \\ \mathsf{PWM0EN} = \mathsf{1} - \mathsf{PWM} \text{ channel 0 enable.} \\ \mathsf{PWM0EN} = \mathsf{0} - \mathsf{PWM} \text{ channel 0 disable.} \\ \end{array}$ 

| Mnemo       | nic: PWN | ID0H         |   |   |   |     | Addres | s: BCH           |
|-------------|----------|--------------|---|---|---|-----|--------|------------------|
| 7           | 6        | 5            | 4 | 3 | 2 | 1   | 0      | Reset            |
| PWMP0       | -        | -            | - | - | - | PWM | 00H    |                  |
| Mnemoi<br>7 | nic: PWN | 1 <b>D0L</b> | 4 | 3 | 2 | 1   | Addres | ss: BDH<br>Reset |

PWMD0[7:0]

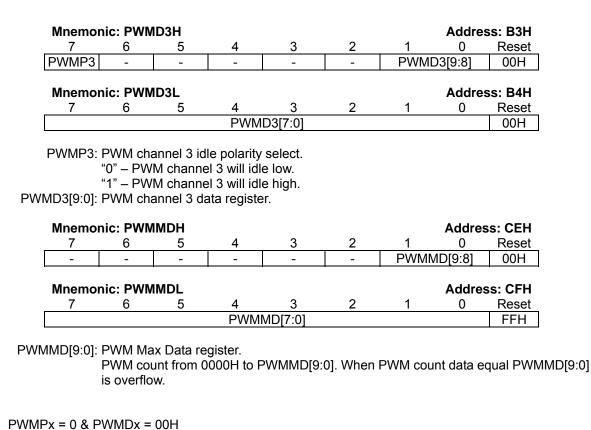
PWMP0: PWM channel 0 idle polarity select. "0" – PWM channel 0 will idle low.

"1" – PWM channel 0 will idle high.

PWMD0[9:0]: PWM channel 0 data register.

| Mnemon     | Mnemonic: PWMD1H Address: |   |       |         |   |     |         |       |  |  |  |
|------------|---------------------------|---|-------|---------|---|-----|---------|-------|--|--|--|
| 7          | 6                         | 5 | 4     | 3       | 2 | 1   | 0       | Reset |  |  |  |
| PWMP1      | -                         | - | -     | -       | - | PWM | D1[9:8] | 00H   |  |  |  |
| Mnemon     | ic: PWN                   |   | Addre | ss: BFH |   |     |         |       |  |  |  |
| 7          | 6                         | 5 | 4     | 3       | 2 | 1   | 0       | Reset |  |  |  |
| PWMD1[7:0] |                           |   |       |         |   |     |         |       |  |  |  |

PWMP1: PWM channel 1 idle polarity select. "0" – PWM channel 1 will idle low. "1" – PWM channel 1 will idle high.


PWMD1[9:0]: PWM channel 1 data register.

| Mnemor | nic: PWN   | ID2H |   |       |   |     | Addre   | ss: B1H |
|--------|------------|------|---|-------|---|-----|---------|---------|
| 7      | 6          | 5    | 4 | 3     | 2 | 1   | 0       | Reset   |
| PWMP2  | -          | -    | - | -     | - | PWM | D2[9:8] | 00H     |
| Mnemor | nic: PWM   | ID2L |   |       |   |     | Addre   | ss: B2H |
| 7      | 2          | 1    | 0 | Reset |   |     |         |         |
|        | PWMD2[7:0] |      |   |       |   |     |         | 00H     |

PWMP2: PWM channel 2 idle polarity select. "0" – PWM channel 2 will idle low. "1" – PWM channel 2 will idle high. PWMD2[9:0]: PWM channel 2 data register.

Specifications subject to change without notice contact your sales representatives for the most recent information.ISSFD-M05953Ver.GSM59R16G602/2012





 $PWMx \_ Low \_ Low$ 

PWM clock

Leader pulse =

新茂國際科技股份有限公司

SyncMOS Technologies International, Inc.



### 13. IIC function

The IIC module uses the SCL (clock) and the SDA (data) line to communicate with external IIC interface. Its speed can be selected to 400Kbps (maximum) by software setting the IICBR [2:0] control bit. The IIC module provided 2 interrupts (RXIF, TXIF). It will generate START, repeated START and STOP signals automatically in master mode and can detects START, repeated START and STOP signals in slave mode. The maximum communication length and the number of devices that can be connected are limited by a maximum bus capacitance of 400pF.

The interrupt vector is 6BH.

| Mnemonic | Description                | Direct | Bit 7  | Bit 6       | Bit 5   | Bit 4      | Bit 3  | Bit 2     | Bit 1     | Bit 0            | RESET |
|----------|----------------------------|--------|--------|-------------|---------|------------|--------|-----------|-----------|------------------|-------|
|          |                            |        |        | IIC f       | unction |            |        |           |           |                  |       |
| AUX      | Auxiliary register         | 91H    | BRGS   | -           | P4SPI   | P1UR       | P4IIC  | -         | P2PW<br>M | DPS              | 00H   |
| IICCTL   | IIC control<br>register    | F9H    | IICEN  |             | MSS     | MAS        | RStart |           | IICBR[2:0 | ]                | 04H   |
| IICS     | IIC status register        | F8H    | MStart | RXIF        | TXIF    | RDR        | TDR    | RXAK      | TXAK      | RW               | 00H   |
| IICA1    | IIC Address 1<br>register  | FAH    |        |             |         | IICA1[7:1] | ]      |           |           | MATCH1<br>or RW1 | A0H   |
| IICA2    | IIC Address 2<br>register  | FBH    |        |             |         | IICA2[7:1] | ]      |           |           | MATCH2<br>or RW2 | 60H   |
| IICRWD   | IIC Read/Write<br>register | FCH    |        | IICRWD[7:0] |         |            |        |           |           | 00H              |       |
| IICS2    | IIC status2<br>register    | FDH    | -      | -           | -       | -          | AB_EN  | BF_E<br>N | AB_F      | BF               | 00H   |
|          | IIC status2                |        | -      | -           | -       |            |        | _         | AB_F      | BF               |       |

| Mnemo | nic: AUX |       |      |       |   |       | Addres | ss: 91H |
|-------|----------|-------|------|-------|---|-------|--------|---------|
| 7     | 6        | 5     | 4    | 3     | 2 | 1     | 0      | Reset   |
| BRGS  | -        | P4SPI | P1UR | P4IIC | - | P2PWM | DPS    | 00H     |

P4IIC: P4IIC = 0 – IIC function on P1. P4IIC = 1 - IIC function on P4.

| Mn  | emor | nic: IICC1 | TL. |     |        |   |            | Addre | ess: F9H |
|-----|------|------------|-----|-----|--------|---|------------|-------|----------|
| 7   | 7    | 6          | 5   | 4   | 3      | 2 | 1          | 0     | Reset    |
| IIC | EN   |            | MSS | MAS | RStart |   | IICBR[2:0] |       | 04H      |

**IICEN: Enable IIC module** 

IICEN = 1 is Enable

IICEN = 0 is Disable.

MSS: Master or slave mode select.

MSS = 1 is master mode.

MSS = 0 is slave mode.

\*The software must set this bit before setting others register.

MAS: Master address select (master mode only)

$$AS = 0$$
 is to use IICA1.

MAS = 1 is to use IICA2. RStart: Re-start control bit (master mode only)

When this bit is set, the module will generate a start condition to the SDA and SCL lines (after current ACK) and send out the calling address which is stored in the IICA1 or IICA2( selected by MAS control bit). When module is finished to send out address, this bit will be cleared by hardware.

IICBR[2:0]: Baud rate selection (master mode only), where Fosc is the external crystal or oscillator frequency. The default is Fosc/512 for users' convenience. IICBR[2:0] Baud rate

Specifications subject to change without notice contact your sales representatives for the most recent information. ISSFD-M059 55 Ver.G SM59R16G6 02/2012



新茂國際科技股份有限公司 SyncMOS Technologies International, Inc.

| 000 | Fosc/32   |
|-----|-----------|
| 001 | Fosc/64   |
| 010 | Fosc/128  |
| 011 | Fosc/256  |
| 100 | Fosc/512  |
| 101 | Fosc/1024 |
| 110 | Fosc/2048 |
| 111 | Fosc/4096 |

| Mnemor | nic: IICS |      |     |     |      |      | Addre | ess: F8H |
|--------|-----------|------|-----|-----|------|------|-------|----------|
| 7      | 6         | 5    | 4   | 3   | 2    | 1    | 0     | Reset    |
| MStart | RxIF      | TxIF | RDR | TDR | RxAK | TxAK | RW    | 00H      |

MStart: Master Start control bit. (Master mode only)

- If set the MStart bit, the module will generate a start condition to the SDA and SCL lines and send out the calling address which is stored in the IICA1 or IICA2 (selected by MAS control bit). When software cleared this bit, the module will generate a stop condition to the SDA and SCL.
- RxIF: The data Receive Interrupt Flag (RXIF) is set after the IICRWD (IIC Read Write Data Buffer) is loaded with a newly receive data.
- TxIF: The data Transmit Interrupt Flag (TXIF) is set when the data of the IICRWD (IIC Read Write Data Buffer) is downloaded to the shift register.
- RDR: The MCU must clear this bit after it gets the data from IICRWD. The IIC module is able to write new data into IICRWD only when this bit is cleared.
- TDR: When MCU finish writing data to IICRWD, the MCU needs to set this bit to '1' to inform the IIC module to send the data in the IICRWD. After IIC module finishes sending the data from IICRWD, this bit will be cleared automatically.
- RxAK: The Acknowledge Status indicate bit. When clear, it means an acknowledge signal has been received after the complete 8 bits data transmit on the bus.
- TxAK: The Acknowledge status transmit bit. When received complete 8 bits data, this bit will set (NoAck) or clear (Ack) and transmit to master to indicate the receive status. Actually, it is sent as the 9<sup>th</sup> bit in one byte transmission as show in Fig. 14-1.
  - RW: The slave mode read (received) or wrote (transmit) on the IIC bus. When this bit is clear, the slave module received data on the IIC bus (SDA).(Slave mode only)

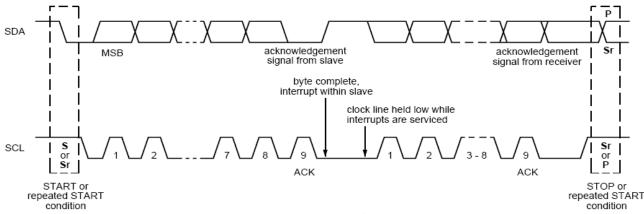



Fig. 13-1: Acknowledgement bit in the 9<sup>th</sup> bit of a byte transmission

Specifications subject to change without notice contact your sales representatives for the most recent information. ISSFD-M059 56 Ver.G SM59R16G6 02/2012



| Mnen | nonic: IIC/ | A1 |           |   |               |     | Addı | ress: FAH |
|------|-------------|----|-----------|---|---------------|-----|------|-----------|
| 7    | 6           | 5  | 4         | 3 | 2             | 1   | 0    | Reset     |
|      |             |    | IICA1[7:1 |   | Match1 or RW1 | A0H |      |           |
|      |             |    | R or R/W  |   |               |     |      |           |

Slave mode:

IICA1[7:1]: IIC Address registers

This is the first 7-bit address for this slave module. It will be checked when an address (from master) is received

Match1: When IICA1 matches with the received address from the master side, this bit will set to 1 by hardware. When IIC bus gets first data, this bit will clear automatically.

Master mode:

IICA1[7:1]: IIC Address registers

This 7-bit address indicate the slave with which it want to communicate.

RW1: This bit will be sent out as RW of the slave side if the module has set the MStart or RStart bit. It appears at the 8<sup>th</sup> bit after the IIC address as shown in Fig. 14-2. It is used to tell the salve the direction of the following communication. If it is 1, the module is in master receive mode. If 0, the module is in master transmit mode.

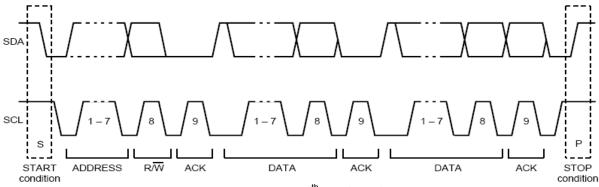



Fig. 13-2: RW bit in the 8<sup>th</sup> bit after IIC address

|   | Mnemo | onic: IIC     | CA2 | Addres        | ss: FBH |  |  |   |       |
|---|-------|---------------|-----|---------------|---------|--|--|---|-------|
|   | 7     | 7 6 5 4 3 2 1 |     |               |         |  |  | 0 | Reset |
| Ē |       |               | l   | Match2 or RW2 | 60H     |  |  |   |       |
|   |       |               |     | R or R/W      |         |  |  |   |       |

Slave mode:

IICA2[7:1]: IIC Address registers

This is the second 7-bit address for this slave module.

It will be checked when an address (from master) is received

Match2: When IICA2 matches with the received address from the master side, this bit will set to 1 by hardware. When IIC bus gets first data, this bit will clear automatically.

Master mode:

IICA2[7:1]: IIC Address registers

This 7-bit address indicate the slave with which it want to communicate.

RW2: This bit will be sent out as RW of the slave side if the module has set the MStart or RStart bit. It is used to tell the salve the direction of the following communication. If it is 1, the module is in master receive mode. If 0, the module is in master transmit mode.

| Specifications subject to change without notice contact | your sales representativ | ves for the mos | t recent information | ation.  |
|---------------------------------------------------------|--------------------------|-----------------|----------------------|---------|
| ISSFD-M059                                              | 57                       | Ver.G           | SM59R16G6            | 02/2012 |



| Mnemonic: IICRWD |             |   |   |   |   |   |   | Addr | ess: FCh |  |
|------------------|-------------|---|---|---|---|---|---|------|----------|--|
|                  | 7           | 6 | 5 | 4 | 3 | 2 | 1 | 0    | Reset    |  |
|                  | IICRWD[7:0] |   |   |   |   |   |   |      | 00H      |  |

IICRWD[7:0]: IIC read write data buffer.

In receiving (read) mode, the received byte is stored here. In transmitting mode, the byte to be shifted out through SDA stays here.

| Mnemor | nic: IICS2 |   |   |       |       |      | Addre | ss: FDH |
|--------|------------|---|---|-------|-------|------|-------|---------|
| 7      | 6          | 5 | 4 | 3     | 2     | 1    | 0     | Reset   |
| -      | -          | - | - | AB_EN | BF_EN | AB_F | BF    | 00H     |

AB\_EN: Arbitration lost enable bit. (Master mode only)

If set AB\_EN bit, the hardware will check arbitration lost. Once arbitration lost occurred, hardware will return to IDLE state. If this bit is cleared, hardware will not care arbitration lost condition. Set this bit when multi-master and slave connection. Clear this bit when single master to single slave.

BF\_EN: Bus busy enable bit. (Master mode only) If set BF\_EN bit, hardware will not generate a start condition to bus until BF=0. Clear this bit will always generate a start condition to bus when MStart is set. Set this bit when multi-master and slave connection. Clear this bit when single master to single slave.

AB\_F: Arbitration lost bit. (Master mode only) In multi-master condition, when send out data bit "1" but return back "0", bus arbitration lost occurred and this bit will be set. Software need to clear this bit and check until BF=0 to resend data again.

#### BF: Bus busy bit. (Master mode only)

If detect scl=0 or sda=0 or bus start, this bit will be set. If detect stop and a period passed(about 4.7us), this bit will be cleared. This bit can be cleared by software to return ready state.



### 14. SPI function

Serial Peripheral Interface (SPI) is a synchronous protocol that allows a master device to initiate communication with slave devices.

The interrupt vector is 4BH.

There are 4 signals used in SPI, they are

SPI\_MOSI: data output in the master mode, data input in the slave mode,

SPI\_MISO: data input in the master mode, data output in the master mode,

SPI\_SCK: clock output form the master, the above data are synchronous to this signal

SPI\_SS: input in the slave mode.

This slave device detects this signal to judge if it is selected by the master.

In the master mode, it can select the desired slave device by any IO with value = 0. Fig. 14-1 is an example showing the relation of the 4 signals between master and slaves.

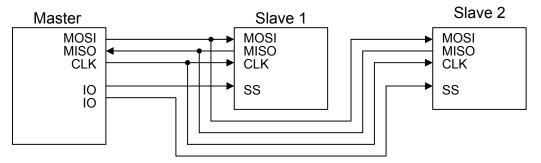
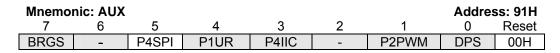
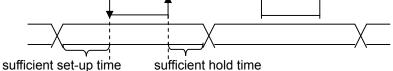




Fig. 14-1: SPI signals between master and slave devices

There is only one channel SPI interface. The SPI SFRs are shown as below:

| Mnemonic | Description                 | Direct | Bit 7 | Bit 6                                     | Bit 5   | Bit 4   | Bit 3    | Bit 2   | Bit 1     | Bit 0     | RESET |
|----------|-----------------------------|--------|-------|-------------------------------------------|---------|---------|----------|---------|-----------|-----------|-------|
|          |                             |        |       | SPI f                                     | unction |         |          |         |           |           |       |
| AUX      | Auxiliary register          | 91H    | BRGS  | -                                         | P4SPI   | P1UR    | P4IIC    | -       | P2PW<br>M | DPS       | 00H   |
| SPIC1    | SPI control register<br>1   | F1H    | SPIEN | PIEN SPIMSS PISS SPICKP SPICKE SPIBR[2:0] |         |         |          |         | 08H       |           |       |
| SPIC2    | SPI control register 2      | F2H    | SPIFD | FD TBC[2:0] SPIRST F                      |         |         | RBC[2:0] |         | 00H       |           |       |
| SPIS     | SPI status register         | F5H    | SPIRF | SPIMLS                                    | SPIOV   | SPITXIF | SPITDR   | SPIRXIF | SPIRDR    | SPIR<br>S | 40H   |
| SPITXD   | SPI transmit data<br>buffer | F3H    |       | SPITXD[7:0]                               |         |         |          |         |           |           | 00H   |
| SPIRXD   | SPI receive data<br>buffer  | F4H    |       | SPIRXD[7:0]                               |         |         |          |         |           |           |       |




P4SPI: P4SPI = 0 - SPI function on P1. P4SPI = 1 - SPI function on P4.

Specifications subject to change without notice contact your sales representatives for the most recent information.ISSFD-M05959Ver.GSM59R16G602/2012



|    | Mnem                                                | nonic: SPIC                                                                                                                       | 1                                           |                               |             |          | Α      | ddre | ss: F1H                        |  |
|----|-----------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|-------------------------------|-------------|----------|--------|------|--------------------------------|--|
|    | 7                                                   | 6                                                                                                                                 | 5                                           | 4                             | 3           | 2        | 1      | 0    | Reset                          |  |
|    | SPIEN                                               | SPIMSS                                                                                                                            | SPISSP                                      | SPICKP                        | SPICKE      | SF       | IBR[2: | 0]   | 08H                            |  |
| SP | IMSS: Ma:<br>"1"<br>"0"<br>PISSP: Sla<br>"1"<br>"0" | able SPI mod<br>ster or Slave<br>is Master mod<br>is Slave mod<br>ve Select (S<br>- high active<br>- low active.<br>ck idle polar | e mode Sele<br>ode.<br>de.<br>S) active p   | ect<br>olarity (slave         | e mode used | d only)  |        |      |                                |  |
|    | _                                                   | – SPI_SCK<br>– SPI_SCK                                                                                                            |                                             |                               |             |          |        |      |                                |  |
| SF | "1"<br>"0"<br>* Tc                                  |                                                                                                                                   | in rising ed<br>in falling ed<br>data latch | lge<br>dge.<br>stability, SM: |             |          |        |      | data as give<br>or falling edg |  |
|    |                                                     |                                                                                                                                   |                                             | <b>↑</b>                      |             | <u> </u> |        |      |                                |  |

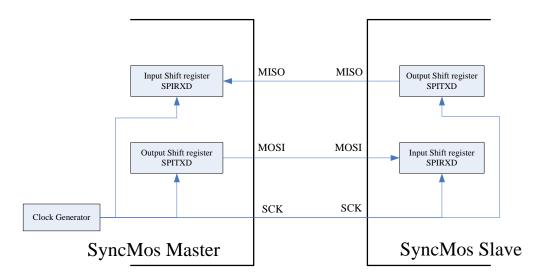


SPIBR[2:0]: SPI baud rate select (master mode used only), here Fosc is the external crystal or oscillator frequency :

| noquono, . |           |
|------------|-----------|
| SPIBR[2:0] | Baud rate |
| 0:0:0      | Fosc/4    |
| 0:0:1      | Fosc/8    |
| 0:1:0      | Fosc/16   |
| 0:1:1      | Fosc/32   |
| 1:0:0      | Fosc/64   |
| 1:0:1      | Fosc/128  |
| 1:1:0      | Fosc/256  |
| 1:1:1      | Fosc/512  |
|            |           |

| Mnemo | nic: SPI | C2       |   |        |   |         | Addre | ess: F2H |
|-------|----------|----------|---|--------|---|---------|-------|----------|
| 7     | 6        | 5        | 4 | 3      | 2 | 1       | 0     | Reset    |
| SPIFD |          | TBC[2:0] |   | SPIRST |   | RBC[2:0 | )]    | 00H      |

SPIFD: Full-duplex mode enable.


"1" : enable full-duplex mode.

"0" : disable full-duplex mode.

When it is set, the TBC[2:0] and RBC[2:0] will be reset and keep to zero, i.e., only 8-bit communication is allowed in the full-duplex mode. When the master device transmits data to the slave device via the MOSI line, the slave device responds sends data back to the master device via the MISO line. This implies that full-duplex transmission with both out-data and in-data are synchronized with the same clock SCK as shown below.

Specifications subject to change without notice contact your sales representatives for the most recent information. Ver.G SM59R16G6 02/2012 ISSFD-M059 60





TBC[2:0]: SPI transmitter bit counter, here 1-8 bits are allowed except for the full-duplex mode

| TBC[2:0] | Bit counter   |
|----------|---------------|
| 0:0:0    | 8 bits output |
| 0:0:1    | 1 bit output  |
| 0:1:0    | 2 bits output |
| 0:1:1    | 3 bits output |
| 1:0:0    | 4 bits output |
| 1:0:1    | 5 bits output |
| 1:1:0    | 6 bits output |
| 1:1:1    | 7 bits output |

SPIRST: SPI Restart.(Slave mode used only) SPIRST = 0 is disable.

SPI transmit/receive data when SS active.

- SPIRST = 1 is enable.
- SPI transmit/receive new data when SS restart.

RBC[2:0]: SPI receiver bit counter, here 1-8 bits are allowed except for the full-duplex mode

| RBC[2:0] | Bit counter  |
|----------|--------------|
| 0:0:0    | 8 bits input |
| 0:0:1    | 1 bit input  |
| 0:1:0    | 2 bits input |
| 0:1:1    | 3 bits input |
| 1:0:0    | 4 bits input |
| 1:0:1    | 5 bits input |
| 1:1:0    | 6 bits input |
| 1:1:1    | 7 bits input |

| Mnemor | nic: SPIS |       |         |        |         |        | Addre | ess: F5H |  |
|--------|-----------|-------|---------|--------|---------|--------|-------|----------|--|
| 7      | 6         | 5     | 4       | 3      | 2       | 1      | 0     | Reset    |  |
| SPIRF  | SPIMLS    | SPIOV | SPITXIF | SPITDR | SPIRXIF | SPIRDR | SPIRS | 40H      |  |

SPIRF: SPI SS/CS Release Flag.

This bit is set when SS/CS release & SPIRST as '1'.

SPIMLS: MSB or LSB first output /input Select.

- "1" is MSB first output/input.
- "0" is LSB first output/input.
- SPIOV: Overflow flag.

When SPIRDR is set and next data already into shift register, this flag will be set.

Specifications subject to change without notice contact your sales representatives for the most recent information.

ISSFD-M059



It is clear by hardware, when SPIRDR is cleared. SPITXIF: Transmit Interrupt Flag. This bit is set when the data of the SPITXD register is downloaded to the shift register. SPITDR: Transmit Data Ready. When MCU finish writing data to SPITXD register, the MCU needs to set this bit to '1' to inform the SPI module to send the data. After SPI module finishes sending the data from SPITXD, this bit will be cleared automatically. SPIRXIF: Receive Interrupt Flag. This bit is set after the SPIRXD is loaded with a newly receive data. SPIRDR: Receive Data Ready. The MCU must clear this bit after it gets the data from SPIRXD register. The SPI module is able to write new data into SPIRXD only when this bit is cleared. SPIRS: Receive Start. This bit set to "1" to inform the SPI module to receive the data into SPIRXD register. Mnemonic: SPITXD Addrose: E2H

| iemc | SUIC: SPI |   |       |         |   |   | Add | aress: гэп |
|------|-----------|---|-------|---------|---|---|-----|------------|
| 7    | 6         | 5 | 4     | 3       | 2 | 1 | 0   | Reset      |
|      |           |   | SPITX | [D[7:0] |   |   |     | 00H        |
|      |           |   |       |         |   |   |     |            |

SPITXD[7:0]: Transmit data buffer.

| Mnemo | Mnemonic: SPIRXD Addres |   |       |         |   |   |   |       |  |  |  |
|-------|-------------------------|---|-------|---------|---|---|---|-------|--|--|--|
| 7     | 6                       | 5 | 4     | 3       | 2 | 1 | 0 | Reset |  |  |  |
|       |                         |   | SPIRX | KD[7:0] |   |   |   | 00H   |  |  |  |

SPIRXD[7:0]: Receive data buffer.

P.S. MISO pin must be floating when SS or CS no-active in slave mode.



# 15. LVI – Low Voltage Interrupt

#### The interrupt vector 63H.

| r     | Mnemonic                                                                                                            | : LVO                                                                                 | C                                                                                                                                                                                   |                                                                                                                       |                                                                                                                  |                              |   | Addre | ss: E6H |
|-------|---------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|------------------------------|---|-------|---------|
|       | 7                                                                                                                   | 6                                                                                     | 5                                                                                                                                                                                   | 4                                                                                                                     | 3                                                                                                                | 2                            | 1 | 0     | Reset   |
| L     | VI_EN                                                                                                               | -                                                                                     | LVR_EN                                                                                                                                                                              | LVSIF                                                                                                                 | -                                                                                                                | -                            | - | LVIS  | 20H     |
| LVR_E | LVI_EN<br>LVI_EN<br>N External<br>LVR_EN<br>LVR_EN<br>IF Low Vol<br>1:the VE<br>0:the VE<br>S: Low Vol<br>0 :The le | = 0 :<br>= 1 :<br>I low<br>I = 0<br>I = 1<br>tage<br>DD vo<br>DD vo<br>tage<br>evel o | nterrupt fu<br>disable low<br>enable low<br>voltage res<br>- disable e<br>- enable e<br>Status Flag<br>bltage unde<br>bltage abov<br>Interrupt le<br>of voltage is<br>of voltage is | v voltage<br>v voltage<br>et functio<br>xternal lo<br>cternal lo<br>r LVI volt<br>e LVI vol<br>vel Selec<br>s Low-lev | detect fun<br>detect fund<br>on enable b<br>w voltage r<br>w voltage r<br>tage<br>tage<br>ttage<br>ction:<br>rel | ction.<br>oit.<br>reset func |   |       |         |

#### Hi-level :

| Symbol           | Parameter                           | Min | Тур | Max | Units |
|------------------|-------------------------------------|-----|-----|-----|-------|
| V <sub>LVI</sub> | Low Voltage Interrupt Voltage Level | 3.4 | 3.7 | 4.0 | V     |
| V <sub>LVR</sub> | Low Voltage Reset Voltage Level     | 3.2 | 3.5 | 3.8 | V     |

Notes: The VLVI always above VLVR about 0.2V.

#### Low-level :

| Symbol           | Parameter                           | Min | Тур | Max | Units |
|------------------|-------------------------------------|-----|-----|-----|-------|
| V <sub>LVI</sub> | Low Voltage Interrupt Voltage Level | 2.1 | 2.3 | 2.5 | V     |
| $V_{LVR}$        | Low Voltage Reset Voltage Level     | 1.9 | 2.1 | 2.3 | V     |

Notes: The VLVI always above VLVR about 0.2V.



### 16. In-System Programming (Internal ISP)

The SM59R16G6 can generate flash control signal by internal hardware circuit. Users utilize flash control register, flash address register and flash data register to perform the ISP function without removing the SM59R16G6 from the system. The SM59R16G6 provides internal flash control signals which can do flash program/chip erase/page erase/protect functions. User need to design and use any kind of interface which SM59R16G6 can input data. User then utilize ISP service program to perform the flash program/chip erase/page erase/protect functions.

#### 16.1. ISP service program

The ISP service program is a user developed firmware program which resides in the ISP service program space. After user developed the ISP service program, user then determine the size of the ISP service program. User need to program the ISP service program in the SM59R16G6 for the ISP purpose.

The ISP service programs were developed by user so that it should includes any features which relates to the flash memory programming function as well as communication protocol between SM59R16G6 and host device which output data to the SM59R16G6. For example, if user utilize UART interface to receive/transmit data between SM59R16G6 and host device, the ISP service program should include baud rate, checksum or parity check or any error-checking mechanism to avoid data transmission error.

The ISP service program can be initiated under SM59R16G6 active or idle mode. It can not be initiated under power down mode.

#### 16.2. Lock Bit (N)

The Lock Bit N has two functions: one is for service program size configuration and the other is to lock the ISP service program space from flash erase function.

The ISP service program space address range \$F000 to \$FFFF. It can be divided as blocks of N\*256 byte. (N=0 to 16). When N=0 means no ISP function, all of 64K byte flash memory can be used as program memory. When N=1 means ISP service program occupies 256 byte while the rest of 63.75K byte flash memory can be used as program memory. The maximum ISP service program allowed is 4K byte when N=16. Under such configuration, the usable program memory space is 60K byte.

After N determined, SM59R16G6 will reserve the ISP service program space downward from the top of the program address \$FFFF. The start address of the ISP service program located at \$Fx00 while x is an even number, depending on the lock bit N. As shown in Table 19-1.

The lock bit N function is different from the flash protect function. The flash erase function can erase all of the flash memory except for the locked ISP service program space. If the flash not has been protected, the content of ISP service program still can be read. If the flash has been protected, the overall content of flash program memory space including ISP service program space can not be read.

|    | Table 16.1 ISP code area.        |
|----|----------------------------------|
| Ν  | ISP service program address      |
| 0  | No ISP service program           |
| 1  | 256 bytes (\$FF00h ~ \$FFFFh)    |
| 2  | 512 bytes (\$FE00h ~ \$FFFFh)    |
| 3  | 768 bytes (\$FD00h ~ \$FFFFh)    |
| 4  | 1.0 K bytes (\$FC00h ~ \$FFFFh)  |
| 5  | 1.25 K bytes (\$FB00h ~ \$FFFFh) |
| 6  | 1.5 K bytes (\$FA00h ~ \$FFFFh)  |
| 7  | 1.75 K bytes (\$F900h ~ \$FFFFh) |
| 8  | 2.0 K bytes (\$F800h ~ \$FFFFh)  |
| 9  | 2.25 K bytes (\$F700h ~ \$FFFFh) |
| 10 | 2.5 K bytes (\$F600h ~ \$FFFFh)  |
| 11 | 2.75 K bytes (\$F500h ~ \$FFFFh) |

Specifications subject to change without notice contact your sales representatives for the most recent information.



新茂國際科技股份有限公司 SyncMOS Technologies International, Inc.

| 12 | 3.0 K bytes (\$F400h ~ \$FFFFh)  |
|----|----------------------------------|
| 13 | 3.25 K bytes (\$F300h ~ \$FFFFh) |
| 14 | 3.5 K bytes (\$F200h ~ \$FFFFh)  |
| 15 | 3.75 K bytes (\$F100h ~ \$FFFFh) |
| 16 | 4.0 K bytes (\$F000h ~ \$FFFFh)  |

ISP service program configurable in N\*256 byte (N=  $0 \sim 16$ )

#### 16.3. Program the ISP Service Program

After Lock Bit N is set and ISP service program been programmed, the ISP service program memory will be protected (locked) automatically. The lock bit N has its own program/erase timing. It is different from the flash memory program/erase timing so the locked ISP service program can not be erased by flash erase function. If user needs to erase the locked ISP service program, he can do it by writer only. User can not change ISP service program when SM59R16G6 was in system.

#### 16.4. Initiate ISP Service Program

To initiate the ISP service program is to load the program counter (PC) with start address of ISP service program and execute it. There are four ways to do so:

- (1) Blank reset. Hardware reset with first flash address blank (\$0000=#FFH) will load the PC with start address of ISP service program. The hardware reset includes Internal (power on reset) and external pad reset.
- (2) Execute jump instruction can load the start address of the ISP service program to PC.
- (3) Enters ISP service program by hardware setting. User can force SM59R16G6 enter ISP service program by setting P2.6, P2.7 "active low" or P4.3 " active low" during hardware reset period. The hardware reset includes Internal (power on reset) and external pad reset. In application system design, user should take care of the setting of P2.6, P2.7 or P4.3 at reset period to prevent SM59R16G6 from entering ISP service program.
- (4) Enter's ISP service program by hardware setting, the port3.0 will be detected the two clock signals during hardware reset period. The hardware reset includes Internal (power on reset) and external pad reset. And detect 2 clock signals after hardware reset.

During hardware reset period, the hardware will detect the status of P2.6/P2.7/P4.3/P3.0. If they meet one of above conditions, chip will switch to ISP mode automatically. After ISP service program executed, user need to reset the SM59R16G6, either by hardware reset or by WDT, or jump to the address \$0000 to re-start the firmware program.

There are 8 kinds of entry mechanisms for user different applications. This entry method will select on the writer or ISP.

- (1) First Address Blank. i.e. \$0000 = 0xFF. And triggered by Internal reset signal.
- (2) First Address Blank. i.e. \$0000 = 0xFF. And triggered by PAD reset signal.
- (3) P2.6 = 0 & P2.7 = 0. And triggered by Internal reset signal.
- (4) P2.6 = 0 & P2.7 = 0. And triggered by PAD reset signal.
- (5) P4.3 = 0. And triggered by Internal reset signal.
- (6) P4.3 = 0. And triggered by PAD reset signal.
- (7) P3.0 input 2 clocks. And triggered by Internal reset signal.
- (8) P3.0 input 2 clocks. And triggered by PAD reset signal.

#### 16.5. ISP register – TAKEY, IFCON, ISPFAH, ISPFAL, ISPFD and ISPFC

| Mnemonic | Description                 | Direct | Bit 7 | Bit 6 | Bit 5    | Bit 4 | Bit 3   | Bit 2 | Bit 1 | Bit 0 | RESET |
|----------|-----------------------------|--------|-------|-------|----------|-------|---------|-------|-------|-------|-------|
|          |                             |        |       | ISP   | function |       |         |       |       |       |       |
| TAKEY    | Time Access Key<br>register | F7H    |       |       |          | TAKE  | Y [7:0] |       |       |       | 00H   |

Specifications subject to change without notice contact your sales representatives for the most recent information. ISSFD-M059 65 Ver.G SM59R16G6 02/2012



### 新茂國際科技股份有限公司 SyncMOS Technologies International, Inc.

#### SM59R16G6/SM59R09G6/SM59R05G6 8-Bit Micro-controller 64KB/36KB/20KB with ISP Flash & 1KB RAM embedded

| IFCON  | Interface Control<br>register           | 8FH | ITS  | CDPR         | -    | -    | ALEC    | C[1:0] | EMEN   | ISPE   | 00H |
|--------|-----------------------------------------|-----|------|--------------|------|------|---------|--------|--------|--------|-----|
| ISPFAH | ISP Flash<br>Address - High<br>register | E1H |      | ISPFAH [7:0] |      |      |         |        |        | FFH    |     |
| ISPFAL | ISP Flash<br>Address - Low<br>register  | E2H |      | ISPFAL [7:0] |      |      |         |        |        | FFH    |     |
| ISPFD  | ISP Flash Data<br>register              | E3H |      |              |      | ISPF | D [7:0] |        |        |        | FFH |
| ISPFC  | ISP Flash Control<br>register           | E4H | EMF1 | EMF2         | EMF3 | EMF4 | -       | ISPF.2 | ISPF.1 | ISPF.0 | 00H |

| Mnemonio | : TAKEY     |   |   |   |   |   | Add | dress: F7H |
|----------|-------------|---|---|---|---|---|-----|------------|
| 7        | 6           | 5 | 4 | 3 | 2 | 1 | 0   | Reset      |
|          | TAKEY [7:0] |   |   |   |   |   |     | 00H        |

ISP enable bit (ISPE) is read-only by default, software must write three specific values 55H, AAH and 5AH sequentially to the TAKEY register to enable the ISPE bit write attribute. That is:

MOV TAKEY, #55H MOV TAKEY, #AAH MOV TAKEY, #5AH

| Mnemoni | c: IFCON |   |   |     |        |      | Ado  | dress: 8FH |
|---------|----------|---|---|-----|--------|------|------|------------|
| 7       | 6        | 5 | 4 | 3   | 2      | 1    | 0    | Reset      |
| ITS     | CDPR     | - | - | ALE | C[1:0] | EMEN | ISPE | 00H        |

The bit 0 (ISPE) of IFCON is ISP enable bit. User can enable overall SM59R16G6 ISP function by setting ISPE bit to 1, to disable overall ISP function by set ISPE to 0. The function of ISPE behaves like a security key. User can disable overall ISP function to prevent software program be erased accidentally. ISP registers ISPFAH, ISPFAL, ISPFD and ISPFC are read-only by default. Software must be set ISPE bit to 1 to enable these 4 registers write attribute.

| Mnemoni | Addre   | ess: E1H |         |         |         |         |         |       |
|---------|---------|----------|---------|---------|---------|---------|---------|-------|
| 7       | 6       | 5        | 4       | 3       | 2       | 1       | 0       | Reset |
| ISPFAH7 | ISPFAH6 | ISPFAH5  | ISPFAH4 | ISPFAH3 | ISPFAH2 | ISPFAH1 | ISPFAH0 | FFH   |

ISPFAH [7:0]: Flash address-high for ISP function

| Mnemoni | c: ISPFAL |         |         |         |         |         | Addres  | ss: E2H |  |
|---------|-----------|---------|---------|---------|---------|---------|---------|---------|--|
| 7       | 6         | 5       | 4       | 3       | 2       | 1       | 0       | Reset   |  |
| ISPFAL7 | ISPFAL6   | ISPFAL5 | ISPFAL4 | ISPFAL3 | ISPFAL2 | ISPFAL1 | ISPFAL0 | FFH     |  |

ISPFAL [7:0]: Flash address-Low for ISP function

The ISPFAH & ISPFAL provide the 16-bit flash memory address for ISP function. The flash memory address should not include the ISP service program space address. If the flash memory address indicated by ISPFAH & ISPFAL registers overlay with the ISP service program space address, the flash program/page erase of ISP function executed thereafter will have no effect.

| Mnemonic: ISPFD Addres |        |        |        |        |        |        |        |       |  |
|------------------------|--------|--------|--------|--------|--------|--------|--------|-------|--|
| 7                      | 6      | 5      | 4      | 3      | 2      | 1      | 0      | Reset |  |
| ISPFD7                 | ISPFD6 | ISPFD5 | ISPFD4 | ISPFD3 | ISPFD2 | ISPFD1 | ISPFD0 | FFH   |  |

ISPFD [7:0]: Flash data for ISP function.

The ISPFD provide the 8-bit data register for ISP function.

Specifications subject to change without notice contact your sales representatives for the most recent information.



| Mnemor | nic: ISPFC | )    |      |   |         |         | Addres  | ss: E4H |
|--------|------------|------|------|---|---------|---------|---------|---------|
| 7      | 6          | 5    | 4    | 3 | 2       | 1       | 0       | Reset   |
| EMF1   | EMF2       | EMF3 | EMF4 | - | ISPF[2] | ISPF[1] | ISPF[0] | 00H     |

EMF1: Entry mechanism (1) flag, clear by reset. (Read only) EMF2: Entry mechanism (2) flag, clear by reset. (Read only) EMF3: Entry mechanism (3) flag, clear by reset. (Read only) EMF4: Entry mechanism (4) flag, clear by reset. (Read only)

ISPF [2:0]: ISP function select bit.

| ISPF[2:0] | ISP function |
|-----------|--------------|
| 000       | Byte program |
| 001       | Chip protect |
| 010       | Page erase   |
| 011       | Chip erase   |
| 100       | Write option |
| 101       | Read option  |
| 110       | Erase option |
| 111       | reserved     |
|           |              |

One page of flash memory is 256 byte

The Option function can access the Internal reset time select(description in section 1.4.1)  $\cdot$  clock source select(description in section 1.5)  $\cdot$  P4[4:6] pins function select(description in section 5)  $\cdot$  WDTEN control bit(description in section 9)  $\cdot$  or ISP entry mechanisms select(description in section 16)  $\circ$ 

When chip protected or no ISP service, option can only read.

The choice ISP function will start to execute once the software write data to ISPFC register.

To perform byte program/page erases ISP function, user need to specify flash address at first. When performing page erase function, SM59R16G6 will erase entire page which flash address indicated by ISPFAH & ISPFAL registers located within the page.

e.g. flash address: \$XYMN

page erase function will erase from \$XY00 to \$XYFF

To perform the chip erase ISP function, SM59R16G6 will erase all the flash program memory except the ISP service program space. To perform chip protect ISP function, the SM59R16G6 flash memory content will be read #00H.

e.g. ISP service program to do the byte program - to program #22H to the address \$1005H

| MOV TAKEY, #55H<br>MOV TAKEY, #AAH<br>MOV TAKEY, #5AH<br>MOV IFCON, #01H<br>MOV ISPFAH, #10H<br>MOV ISPFAL, #05H<br>MOV ISPFD, #22H | ; enable ISPE write attribute<br>; enable SM59R16G6 ISP function<br>; set flash address-high, 10H<br>; set flash address-low, 05H<br>; set flash data to be programmed, data = 22H |
|-------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| MOV ISPFC, #00H                                                                                                                     | ; start to program #22H to the flash address \$1005H                                                                                                                               |
|                                                                                                                                     |                                                                                                                                                                                    |

Specifications subject to change without notice contact your sales representatives for the most recent information.ISSFD-M05967Ver.GSM59R16G602/2012



### **Operating Conditions**

| Symbol | Description           | Min. | Тур. | Max. | Unit. | Remarks                        |
|--------|-----------------------|------|------|------|-------|--------------------------------|
| TA     | Operating temperature | -40  | 25   | 85   | °C    | Ambient temperature under bias |
| VDD    | Supply voltage        | 2.7  |      | 5.5  | V     |                                |

### **DC Characteristics**

 $T_{A}\text{=}-40^{\circ}\text{C}~\text{to}~85^{\circ}\text{C}$  ,  $V_{CC}\text{=}5.0V$ 

| Symbol                                                     | Parameter                                                  | Valid               | Min           | Max                   | Units       | Conditions                                              |
|------------------------------------------------------------|------------------------------------------------------------|---------------------|---------------|-----------------------|-------------|---------------------------------------------------------|
| VIL1                                                       | Input Low-voltage                                          | Port 0,1,2,3,4,5    | -0.5          | 0.8                   | V           | Vcc=5V                                                  |
| VIL2                                                       | Input Low-voltage                                          | RES, XTAL1          | 0             | 0.8                   | V           |                                                         |
| VIH1                                                       | Input High-voltage                                         | Port 0,1,2,3,4,5    | 2.0           | V <sub>CC</sub> + 0.5 | V           |                                                         |
| VIH2                                                       | Input High-voltage                                         | RES, XTAL1          | 70%Vcc        | V <sub>CC</sub> + 0.5 | V           |                                                         |
| VOL                                                        | Output Low-voltage                                         | Port 0,1,2,3,4,5    |               | 0.4                   | V           | IOL=4.9mA Vcc=5V                                        |
| VOH1                                                       | Output High-voltage<br>using Strong Pull-up <sup>(1)</sup> | Port 0,1,2,3,4,5    | $90\% V_{CC}$ |                       | V           | IOH= -4.6mA                                             |
|                                                            |                                                            |                     | 2.4           |                       | V           | IOH= -250uA                                             |
| VOH2 Output High-voltage using Weak Pull-up <sup>(2)</sup> | Port 0,1,2,3,4,5                                           | 75% V <sub>CC</sub> |               | V                     | IOH= -162uA |                                                         |
|                                                            |                                                            | $90\% V_{CC}$       |               | V                     | IOH= -73uA  |                                                         |
| IIL                                                        | Logic 0 Input Current                                      | Port 0,1,2,3,4,5    |               | -75                   | uA          | Vin= 0.45V                                              |
| ITL                                                        | Logical Transition<br>Current                              | Port 0,1,2,3,4,5    |               | -650                  | uA          | Vin= 2.0V                                               |
| ILI                                                        | Input Leakage Current                                      | Port 0,1,2,3,4,5    |               | ±10                   | uA          | 0.45V <vin<vcc< th=""></vin<vcc<>                       |
| RRST                                                       | Reset Pull-down<br>Resistor                                | RES                 | 50            | 300                   | kΩ          |                                                         |
| CIO                                                        | Pin Capacitance                                            |                     |               | 10                    | pF          | Freq= 1MHz, Ta= $25^{\circ}$ C                          |
| ICC Power Supply Curr                                      |                                                            | t VDD               |               | 12                    | mA          | Active mode, 12MHz $V_{CC}$ =5V 25 $^\circ\!\mathbb{C}$ |
|                                                            | Power Supply Current                                       |                     |               | 11                    | mA          | Idle mode, 12MHz $V_{CC}$ =5V 25 $^\circ\!\mathrm{C}$   |
|                                                            |                                                            |                     |               | 5                     | uA          | Power down mode $V_{CC}$ =5V 25 $^\circ\!\!C$           |

Notes : 1. Port in Push-Pull Output Mode

2. Port in Quasi-Bidirectional Mode



# 新茂國際科技股份有限公司 SyncMOS Technologies International,Inc.

#### SM59R16G6/SM59R09G6/SM59R05G6 8-Bit Micro-controller 64KB/36KB/20KB with ISP Flash & 1KB RAM embedded

 $T_{A}\text{=}-40^{\circ}\text{C}~\text{to}~85^{\circ}\text{C}$  ,  $V_{CC}\text{=}3.0V$ 

| Symbol                   | Parameter                                                  | Valid            | Min                 | Max                   | Units                                                    | Conditions                                               |
|--------------------------|------------------------------------------------------------|------------------|---------------------|-----------------------|----------------------------------------------------------|----------------------------------------------------------|
| VIL1                     | Input Low-voltage                                          | Port 0,1,2,3,4,5 | -0.5                | 0.8                   | V                                                        | Vcc=3.0V                                                 |
| VIL2                     | Input Low-voltage                                          | RES, XTAL1       | 0                   | 0.8                   | V                                                        |                                                          |
| VIH1                     | Input High-voltage                                         | Port 0,1,2,3,4,5 | 2.0                 | V <sub>CC</sub> + 0.5 | V                                                        |                                                          |
| VIH2                     | Input High-voltage                                         | RES, XTAL1       | 70%Vcc              | V <sub>CC</sub> + 0.5 | V                                                        |                                                          |
| VOL                      | Output Low-voltage                                         | Port 0,1,2,3,4,5 |                     | 0.4                   | V                                                        | IOL=3.2mA Vcc=3.0V                                       |
| VOH1                     | Output High-voltage<br>using Strong Pull-up <sup>(1)</sup> | Port 0,1,2,3,4,5 | 90% V <sub>CC</sub> |                       | V                                                        | IOH= -2.3mA                                              |
|                          |                                                            | Port 0,1,2,3,4,5 | 2.4                 |                       | V                                                        | IOH= -77uA                                               |
| VOH2                     |                                                            |                  | 90% V <sub>CC</sub> |                       | V                                                        | IOH= -33uA                                               |
| IIL                      | Logic 0 Input Current                                      | Port 0,1,2,3,4,5 |                     | -75                   | uA                                                       | Vin= 0.45V                                               |
| ITL                      | Logical Transition<br>Current                              | Port 0,1,2,3,4,5 |                     | -650                  | uA                                                       | Vin=1.5V                                                 |
| ILI                      | Input Leakage Current                                      | Port 0,1,2,3,4,5 |                     | ±10                   | uA                                                       | 0.45V <vin<vcc< th=""></vin<vcc<>                        |
| RRST                     | Reset Pull-down<br>Resistor                                | RES              | 50                  | 300                   | kΩ                                                       |                                                          |
| CIO                      | Pin Capacitance                                            |                  |                     | 10                    | pF                                                       | Freq= 1MHz, Ta= 25 $^\circ\!\mathrm{C}$                  |
| ICC Power Supply Current |                                                            |                  | 11                  | mA                    | Active mode ,12MHz $V_{CC}$ = 3.0 V 25 $^\circ\!{\rm C}$ |                                                          |
|                          | Power Supply Current                                       | VDD              |                     | 10                    | mA                                                       | Idle mode, 12MHz $V_{CC}$ =3.0V 25 $^\circ\! \mathbb{C}$ |
|                          |                                                            |                  |                     | 4                     | uA                                                       | Power down mode $V_{CC}$ =3.0V 25 $^\circ C$             |

Notes: 1. Port in Push-Pull Output Mode

2. Port in Quasi-Bidirectional Mode