Am27S18 • Am27S19

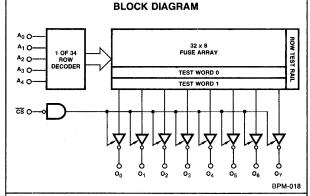
256-Bit Generic Series Bipolar PROM

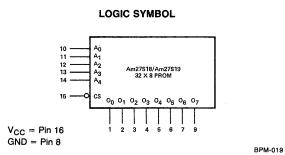
DISTINCTIVE CHARACTERISTICS

- High Speed 40ns max commercial range access time
- Excellent performance over full MIL and commercial ranges
- Highly reliable, ultra-fast programming Platinum-Silicide fuses
- High programming yield
- · Low current PNP inputs
- · High current open collector and three-state outputs
- Fast chip select
- Access time tested with N² patterns
- Pin for pin replacements for industry standard products
- Common Generic PROM series electrical characteristics and simple programming procedures.

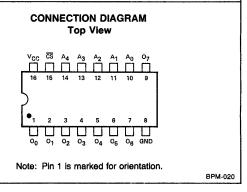
FUNCTIONAL DESCRIPTION

The Am27S18 and Am27S19 are high speed electrically programmable Schottky read only memories. Organized in the industry standard 32 x 8 configuration, they are available in both open collector Am27S18 and three-state Am27S19 output versions. After programming, stored information is read on outputs O_0-O_7 by applying unique binary addresses to A_0-A_4 and holding the chip select input, \overline{CS} , at a logic LOW. If the chip select input goes to a logic HIGH, O_0-O_7 go to the off or high impedance state.


GENERIC SERIES CHARACTERISTICS


The Am27S18 and Am27S19 are members of an Advanced PROM series incorporating common electrical characteristics and programming procedures. All parts in this series are produced with a fusible link at each memory location storing a logic LOW and can be selectively programmed to a logic HIGH by applying appropriate voltages to the circuit.

All parts are fabricated with AMD's fast programming highly reliable Platinum-Silicide Fuse technology. Utilizing easily implemented programming (and common programming personality card sets) these products can be rapidly programmed to any customized pattern. Extra test words are pre-programmed during manufacturing to insure extremely high field programming yields, and produce excellent parametric correlation.


Platinum-Silicide was selected as the fuse link material to achieve a well controlled melt rate resulting in large non-conductive gaps that ensure very stable long term reliability. Extensive operating testing has proven that this low-field, large-gap technology offers the best reliability for fusible link PROMs.

Common design features include active loading of all critical AC paths regulated by a built-in temperature and voltage compensated bias network to provide excellent parametric performance over MIL supply and temperature ranges. Selective feedback techniques have been employed to minimize delays through all critical paths producing the fastest speeds possible from Schottky processed PROMs.

ORDERING INFORMATION										
Package Type	Order Number									
Open Collectors										
Hermetic DIP	0°C to +75°C	AM27S18DC								
Hermetic DIP	-55°C to +125°C	AM27S18DM								
Hermetic Flat Pak	-55°C to +125°C	AM27S18FM								
Т	hree-State Outputs									
Hermetic DIP	0°C to +75°C	AM27S19DC								
Hermetic DIP	-55°C to +125°C	AM27S19DM								
Hermetic Flat Pak	-55°C to +125°C	AM27S19FM								

Am27S18 • Am27S19

MAXIMUM RATINGS (Above which the useful life may be impaired)	
Storage Temperature	-65°C to +150°C
Temperature (Ambient) Under Bias	−55°C to +125°C
Supply Voltage to Ground Potential (Pin 16 to Pin 8) Continuous	-0.5V to +7.0V
DC Voltage Applied to Outputs (Except During Programming)	$-0.5V$ to $+V_{CC}$ max.
DC Voltage Applied to Outputs During Programming	21V
Output Current into Outputs During Programming (Max. Duration of 1 sec.)	200mA
DC Input Voltage	-0.5V to +5.5V
DC Input Current	-30mA to, +5mA

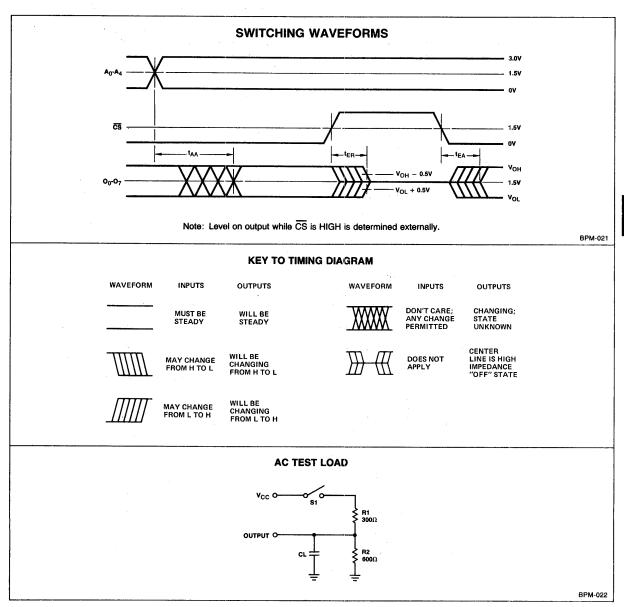
OPERATING RANGE

Γ	COM'L	Am27S18XC, Am27S19XC	$T_A = 0^{\circ}C \text{ to } +75^{\circ}C$	$V_{CC} = 5.0V \pm 5\%$
ſ	MIL	Am27S18XM, Am27S19XM	$T_A = -55^{\circ}C \text{ to } +125^{\circ}C$	$V_{CC} = 5.0V \pm 10\%$

ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE (Unless Otherwise Noted) PRELIMINARY DATA

arameters •	Description	Tes	Min.	Typ. (Note 1)	Max.	Units			
V _{OH} (Am27LS19 only)	Output HIGH Voltage	V _{IN} = V _{IH}	2.4			Volts			
v _{OL}	Output LOW Voltage	V _{CC} = MII V _{IN} = V _{IF}	N., I _{OL} = 16m or V _{IL}	ıA			0.45	Volts	
V _{IH}	Input HIGH Level	Guarantee voltage for	input logical all inputs	HIGH	2.0			Volts	
V _{IL}	Input LOW Level	Guarantee voltage for	d input logical all inputs	LOW			0.8	Volts	
1 ₁ L	Input LOW Current	V _{CC} = MA	X., V _{IN} = 0.4	5V		-0.010	-0.250	mA	
Iн	Input HIGH Current	V _{CC} = MA	X., V _{IN} = 2.7	V			25	μΑ	
Ц	Input HIGH Current	V _{CC} = MA	X., V _{IN} = 5.5	٧			1.0	mA	
I _{SC} (Am27LS19 only)	Output Short Circuit Current	V _{CC} = MA	.X., V _{OUT} = (0.0V (Note 2)	-20	-40	-90	mA	
'cc	Power Supply Current	All inputs V _{CC} = MA				90	115	mA	
Vi	Input Clamp Voltage	V _{CC} = MI	N., I _{IN} = -18	mA			-1.2	Volts	
				V _O = 4.5 V			40		
ICEX	Output Leakage Current	$V_{\overline{CS}} = MAX.$ $V_{\overline{CS}} = 2.4V$	Am27LS19	V _O = 2.4V			40	μΑ	
		VCS = 2.4V	only	V _O = 0.4V			-40		
CIN	Input Capacitance	V _{1N} = 2.0	V @ f = 1 MH	z (Note 3)		4		pF	
C _{OUT}	Output Capacitance	V _{OUT} = 2	1.0V @ f = 1 N	IHz (Note 3)		8		Pi	

Notes: 1. Typical limits are at V_{CC} = 5.0 V and T_A = 25°C.


2. Not more than one output should be shorted at a time. Duration of the short circuit should not be more than one second.

3. These parameters are not 100% tested, but periodically sampled.

SWITCHING CHARACTERISTICS OVER OPERATING RANGE PRELIMINARY DATA

			Тур	Ma	1	
Parameter	Description	Test Conditions	5V 25°C	COM'L	MIL	Units
t _{AA}	Address Access Time		25	40	50	ns
t _{EA}	Enable Access Time	AC Test Load (See Notes 1-3)	15	25	30	ns
t _{ER}	Enable Recovery Time	(5555100 1 0)	15	25	30	ns

Notes: 1. t_{AA} is tested with switch S₁ closed and C_L = 30pF.
 2. For open collector outputs, t_{EA} and t_{ER} are tested with S₁ closed to the 1.5V output level. C_L = 30pF.
 3. For three state outputs, t_{EA} is tested with C_L = 30pF to the 1.5V level; S₁ is open for high impedance to HIGH tests and closed for high impedance to LOW tests. t_{ER} is tested with C_L = 5pF. HIGH to high impedance tests are made with S₁ open to an output voltage of V_{OH} - 0.5V; LOW to high impedance tests are made with S₁ closed to the V_{OL} + 0.5V level.

PROGRAMMING

The Am27S18 and Am27S19 are manufactured with a conductive Platinum-Silicide link at each bit location. The output of the memory with the link in place is LOW. To program the device, the fusible links are selectively opened.

The fusible links are opened one at a time by passing current through them from a 20 volt supply which is applied to one memory output after the CS input is at a logic HIGH. Current is gated through the addressed fuse by raising the $\overline{\text{CS}}$ input from a logic HIGH to 15 volts. After 50 µsec, the 20 volt supply is removed, the chip enabled, and the output level sensed to determine if the link has opened. Most links will open within 50 usec. Occasionally a link will be stronger and require additional programming cycles. The recommended duration of additional programming periods is 5 msec. If a link has not opened after a total elapsed programming time of 400 msec, further programming of the device should not be attempted. Successive links are programmed in the same manner until all desired bit locations have been programmed to the HIGH

Typical current into an output during programming will be approximately 140mA until the fuse link is opened, after which the current drops to approximately 40mA. Current into the CS pin when it is raised to 15 volts is typically 1.5mA.

The memories may become hot during programming due to the large currents being passed. Programming cycles should not be applied to one device more than 5 seconds to avoid heat damage. If this programming time is exceeded, all power to the chip including V_{CC} should be removed for a period of 5 seconds after which programming may be resumed.

When all programming has been completed, the data content of the memory should be verified by sequentially reading all words. Occasionally this verification will show that an extra undesired link has been fused. Should this occur, immediately check the programming equipment to make sure that all device pins are firmly contacting the programming socket, that the input signal levels exhibit sufficient noise margins, and that the programming voltages are within the specified limits. All of these conditions must be maintained during programming. AMD PROMs are thoroughly tested to minimize unwanted fusing; fusing extra bits is generally related to programming equipment problems.

PROGRAMMING PARAMETERS

Parameter	Description	Min.	Max.	Units
V _{CCP}	V _{CC} During Programming	5.0	5.5	Volts
VIHP	Input HIGH Level During Programming	2.4	5.5	Volts
VILP	Input LOW Level During Programming	0.0	0.45	Volts
V _{CSP}	CS Voltage During Programming	14.5	15.5	Volts
V _{OP}	Output Voltage During Programming	19.5	20.5	Volts
VONP	Voltage on Outputs Not to be Programmed	0	V _{CCP} +0.3	Volts
IONP	Current into Outputs Not to be Programmed		20	mA
d(V _{OP})/dt	Rate of Output Voltage Change	20	250	V/μsec
d(V _{CS})/dt	Rate of CS Voltage Change	100	1000	V/μsec
	Programming Period ~ First Attempt	50	100	μsec
tp	Programming Period - Subsequent Attempts	5.0	15	msec

- Notes: 1. All delays between edges are specified from completion of the first edge to beginning of the second edge; i.e., not to the midpoints.
 - 2. Delays t_1 , t_2 , t_3 and t_4 must be greater than 100 ns; maximum delays of 1 μ sec are recommended to minimize heating during programming
 - 3. During ty, a user defined period, the output being programmed is switched to the load R and read to determine if additional pulses are required.
 - 4. Outputs not being programmed are connected to V_{ONP} through resistor R which provides output current limiting.

SELECTED ADDRESS STABLE CS ENABLE PROGRAMMING CYCLE

PROGRAMMING WAVEFORMS

Am27S18 Am27S19

SIMPLIFIED PROGRAMMING DIAGRAM

5-26

BPM-023

5

BPM-025

PROGRAMMING EQUIPMENT

Generic programming boards and device adapters are available from the sources listed below. In each case, the programming boards are used in these manufacturer's automatic

programmers to program all AMD generic series bipolar PROMs; individual adapters are required for each basic part type in the series.

SOURCE AND LOCATION

Data I/O Corp. P.O. Box 308 Issaquah, Wash. 98027 ries.
Pro-Log Corp.
2411 Garden Road

PROGRAMMER MODEL(S)
AMD GENERIC BIPOLAR

Model 5, 7 and 9 909-1286-1 Monterey, Ca. 93940 M900 and M920 PM9058

PROM PERSONALITY BOARD
Am27S18 • Am27S19

715-1407-1

PA16-6 and 32 x 8 (L)

ADAPTERS AND CONFIGURATOR

OBTAINING PROGRAMMED UNITS

Programmed devices may be purchased from your distributor or Advanced Micro Devices. The program data should be submitted in the form of a punched paper tape and must be accompanied by a written truth table. The punched tape can be delivered with your order or may be transmitted over a TWX machine or time-sharing terminal. ASCII BPNF is our preferred paper tape format.

Truth tables are also acceptable, but are much less desirable especially for larger density PROMs. Submission of a truth table requires the generation of a punched paper tape at the distributor or factory resulting in longer lead times, greater possibility of error, and higher cost.

ASCII BPNF

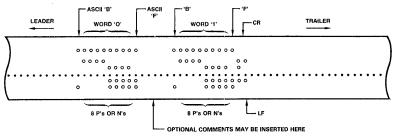
An example of an ASCII tape in the BPNF format is shown below. They can be punched on any Teletype® or on a TWX or Telex machine. The format chosen provides relatively good error detection. Paper tapes must consist of:

- 1. A leader of at least 25 rubouts.
- 2. The data patterns for all 32 words, starting with word 0, in the following format:
 - Any characters, including carriage return and line feed, except "B".
 - b. The letter "B", indicating the beginning of the data word.
 - c. A sequence of eight Ps or Ns, starting with output O7.
 - d. The letter "F", indicating the finish of the data word.
 - e. Any text, including carriage return and line feed, except the letter "B".

3. A trailer of at least 25 rubouts.

A P is a HIGH logic level = 2.4 volts. An N is a LOW logic level = 0.4 volts.

A convenient pattern to use for the data words is to prefix the word (or every few words with the word number, then type the data word, then a comment, then carriage return and line feed as shown below. There must be no characters between the B and the F except for the eight Ps and Ns. If an error is made in a word, the entire word must be cancelled with rubouts back to the letter B, then the word re-typed beginning with the B

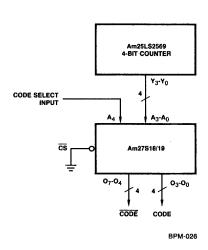

When TWXing your tape, be sure the tape is in even parity. Parity is not necessary if the tape is mailed.

TYPICAL PAPER TAPE FORMAT

øøø	BPNPPNNNPF	WORD ZERO (R) (L)
	BPPPPPPNNF	COMMENT FIELD (R) (L)
øø2	BNNNPPPPNF	ANY (R) (L)
	BNNNNNNNF	TEXT (R) (L)
øø4	BPNNNNNPF	CAN (R) (L)
	BNPPNPPNNF	GO (R) (L)
øø6	BPNNPPPNNF	HERE (R) (L)
´ :	::::::::::	:
ø31	BNNNNPPPNF	end (R) (L)
_		
$(\mathbf{R}) = 0$	CARRIAGE RETU	RN
(L)=1	INE FEED	

RE	SUL	TIN	G D	EVIC	CE T	'RU1	гн т	ABI	.E (cs :	= L(OW)
A4	A ₃	A ₂	A ₁	A ₀	07	06	05	04	O_3	02	01	00
L	L	L	L	L	Н	L	Н	Н	L	L	L	Н
L	L	L	L	н.	н	Н	Н	н	н	Н	L.	L
L	L	L	Н	L	L	L	L	Н	Н	Н	Н	L
L	L	L	Н	н	L	L	L	L	L	L	L	L
L	L	Н	L	L	н	L	L	L	L	L	L	Н
L	L	Н	L	Н	L	H	Н	L	н	Н	L	L
L	L	н	Н	L	н	L.	L.	Н	Н	Н	L	L
	:							:				
Н	н	н	Н	Н	L	L	L	Ļ	Н	Н	н	L

ASCII PAPER TAPE



APPLYING THE Am27S18 AND Am27S19

The Am27S18 and Am27S19 PROMs may be used as code converters. Examples include conversion of hexadecimal, octal or BCD to seven segment display drive format. In many code conversion applications an extra PROM address input is available and may be used as a polarity control, blanking con-

trol or code selector input. The use of a single Am27S18 or Am27S19 to convert the outputs of a binary counter to either excess three or gray code format is illustrated below. In this case both codes are generated in true and complemented form simultaneously.

TRUTH TABLE

	AD	DRI	ESS		COMPLEMENT					TR	UE		
A 4	A ₃	A ₂	A ₁	A ₀	07	06	05	O ₄	03	02	01	O_0	
0	0	0	0	0	1	1	0	0	0	0	1	1	
0	0	0	0	1	1	0	1	1	0	1	0	0	
0	0	0	1	0	1	0	1	0	0	1	0	1	_
0	0	0	1	1	1	0	0	1	0	1	1	0	W
0	0	1	0	0	1	0	0	0	0	1	1	1	EXCESS
0	0	1	0	1	0	1	1	1	1	0	0	0	S
0	0	1	1	0	0	1	1	0	1	0	0	1	
0	0	1	1	1	0	1	0	1	1	0	1	0	THREE CODE
0	1	0	0	0	0	1	0	0	1	0	1	1	교
0	1	0	0	1	0	0	1	1	1	1	0	0	iii
0	1	0	1	0	Х	Х	Х	Х	Х	Х	Х	Х	Ω
0	1	0	1	1	×	Х	Х	Х	Х	Х	Х	Х	8
0	1	1	0	0	Х	Х	Х	Х	Х	Х	Х	Х	m
0	1	1	0	1	Х	Х	Х	Х	X	Х	Х	Х	
0	1	1	1	0	X	Х	Х	Х	X	Х	X	Х	
0	1	1	1	1	Х	Х	Х	Х	Х	Х	Х	Х	
1	0	0	0	0	1	1	1	1 ,	0	0	0	0	
1	0	0	0	1	1	1	1	0	0	0	0	1	
1	0	0	1	0	1	1	0	0	0	0	1	1	
1	0	0	1	1	1	1	0	1	0	0	1	0	
1	0	1	0	0	1	0	0	1	0	1	1	0	
1	0	1	0	1	1	0	0	0	0	1	1	1	ဂ
1	0	1	1	0	1	0	1	0	0	1	0	1	GRAY CODE
1	0	1	1	1	1	0	1	1	0	1	0	0	🕇
1	1	0	0	0	0	0	1	1	1	1	0	0	0
1	1	0	0	1	0	0	1	0	1	1	0	1	임
1	1	0	1	0	0	0	0	0	1	1	1	1	Μ
1	1	0	1	1	0	0	0	1	1	1	1	0	
1	1	1	0	0	0	1	0	1	1	0	1	0	İ
1	1	1	0	1	0	1	0	0	1	0	1	1	
1	1	1	1	0	0	1	1	0	1	0	0	1	ĺ
1	1	1	1	1	0	1	1	1	1	0	0	0	