
1

AVR302: Software I 2C™ Slave Implementation

Features
• Interrupt Based
• Device can be Given Any 7-bit Address

(expandable to 10-bit)
• Supports Normal and Fast Mode

(400 kbps)
• Easy Insertion of “Wait States”
• Supports Wake-up from Idle Mode
• Code Size 160 Words (maximum)

Introduction
The need for a simple and cost effective
inter-IC bus for use in consumer, tele-
communications and industrial electron-
ics, led to the developing of the I2C bus.
Today the I2C bus is implemented in a
large number of peripheral and micro-
controllers, making it a good choice in
low speed applications. The AT90S1200
does not have dedicated hardware for
the I2C, but because of the high process-
ing speed and flexible I/O ports, an
effective software I2C slave implementa-
t i on , can eas i l y be done. The
AT90S1200 is the only 8-bit MCU known
to date that can perform fast (400 kbps)
I2C slave operations in software.

Theory of Operation
The I2C bus is a two-wire synchronous
serial interface consisting of one data
(SDA) and one clock (SCL) line. By
using open drain/collector outputs the
I2C bus supports any fabrication process
(CMOS, bipolar and more).

The I2C bus is a multi-master bus where
one or more devices, capable of taking
control of the bus, can be connected.
Only master devices can drive both the
SCL and SDA lines while a slave device
is only allowed to issue data on the SDA
line.

Figure 1. START and STOP conditions

S T A R T
CONDIT ION

S T O P
CONDIT ION

S C L

S D A

Software I 2C
Slave
Implementation

Application
Note

AVR302

0951A-A–9/97

AVR3022

Data transfer is always initiated by a bus master device. A
high to low transition on the SDA line while SCL is high is
defined to be a START condition (or a repeated start condi-
tion). A START condition is always followed by the (unique)
7-bit slave address and then by a data direction bit. The
slave device addressed now acknowledges to the master
by holding SDA low for one clock cycle. If the master does
not receives any acknowledge, the transfer is terminated.
Depending of the data direction bit, the master or slave
now transmits 8-bit of data on the SDA line. The receiving

device then acknowledges the data. Multiple bytes can be
transferred in one direction before a repeated START or a
STOP condition is issued by the master. The transfer is ter-
minated when the master issues a STOP condition. A
STOP condition is defined by a low to high transition on
the SDA line while the SCL is high.

If a slave device cannot handle incoming data until it has
performed some other function, it can hold SCL low to force
the master into a wait-state.

Figure 2. Bit transfer on the I2C bus

Change of data on the SDA line is only allowed during the
low period of SCL as shown in Figure 2. This is a direct
consequence of the definition of the START and STOP
conditions. A more detailed description and timing specifi-
cations, can be found in [1].

S D A

S C L

D A T A
VALID

C H A N G E
A L L O W E D

AVR302

3

Connection
Both I2C lines (SDA and SCL) are bi-directional, therefore
outputs must be of an open-drain or an open-collector type.
Each line must be connected to the supply voltage via a

pull-up resistor. A line is then logic high when none of the
connected devices drives the line, and logic low if one or
more is drives the line low.

Figure 3. Physical connection to the I2C bus

Figure 3 shows how to connect the microcontroller to the
I2C bus. The value of RP depends on VDD and the bus
capacitance (typically 4.7k). Since SDA is connected to
INT0, a falling edge on the SDA will cause an interrupt
when a START condition is detected.

SCLK IN

"0"

SCLK OUT

DATA IN

"0"

DATA OUT

R P R P

SCL S D A

T0

INT0

AT90S1200
(I2C Slave)

SCL

S D A

I2C MASTER

V D D

4

Implementation
The implementation of the I2C slave device presented in
this application note is divided into two main parts. These
are a special initialization sequence executed directly after
a reset and the interrupt handling routine. Flow charts is
shown in Figure 4 and Figure 5.

Figure 4. Initialization Flow Chart

The initialization routine ‘i2c_init’ (Figure 4) perform the
necessary initialization of PORTD and External Interrupt 0.
Note that the port initialization shown in the program code
really has no effect since both DDRD and PORTD registers
are zero after reset. However if other pins on port D needs
to be initialized, this could be done here.

When initialization is done, the routine enters into a busy-
loop which waits for the first START condition. This is done
because a high to low transition on SDA not necessarily
indicates a START condition if the bus is not free (no activ-
ity). Hence, both SDA and SCL must be monitored.

When a START condition is detected, a call to the interrupt
service routine handles the first transfer and enables the
interrupts.

The interrupt handling routine (flow chart shown in Figure
5) is a combination of two routines ‘i2c_wakeup’ and
‘i2c_skip’. The combining of routines keeps the code size
down.

’i2c_wakeup’ detects start condition (edge interrupt on
EXT_INT0) and handles the data transfer on the I2C bus.
There are two important locations in this routine where the
user can add own code. One part handles incoming data
and the other handles outgoing data. In the program code
these parts are commented with ‘INSERT USER CODE
HERE’. Received data or data to be send must be placed
in the ‘i2cdata’ register.

’i2c_skip’ handles situations where data transfer on the I2C
bus is not addressed to this device. Recall that if the bus is
not free, both SDA and SCL must be monitored for a
START (or STOP) condition. In this implementation
timer/counter0 is used to count 8 SCL clocks i.e. one byte.
By using the timer/counter 0 overflow interrupt, processing
time is freed while one byte is transferred. When timer
overflow occurs, the ‘i2c_skip’ is called and a new condition
test is done.

RESET

Init I2C Port
and INT0

Wait for Start Condit ion

Cal l INT0 Handle

(main)

5

Figure 5. Interrupt Handling Flow Chart

EXT_ INT0

Receive I 2C
Address

HIT

Send
Acknowledge

Check
Address

Check
R/W b i t

Prepare Output

Transmi t t
8 databi ts

Read
acknowledge

Master
acknowledges

data ?

YES

READ

NO

Samp le
SDA & SCL

Hand le
Incomming Data

SDA or SCL
Changed

Send ACK

Store MSB

Rece ive
bit 6 to 0

WRITE

YES

NO

SCL Low

YES

SDA LowNO

Samp le
SDA & SCL

SDA or SCL
Changed

SKIP BYTE

YES

SCL Low

YES

SDA Low NO

NO

NO

MISS

NO

Return f rom
interrupt

Return f rom
interrupt

YES

YES

AVR3026

Performance Figures

Register Usage
Only five registers are used in this implementation: ‘temp’,
‘etemp’, ‘i2cdata’, ‘i2cadr’ and ‘i2cstat’. Both temporary reg-
isters are free to be used inside the interrupt user code.

Tips and Warnings
The I2C routine presented can be reduced in size if the
application guarantees that the bus is free (no activity)
before initialization is done. As an example, this can be
done by letting all masters wait approximately 20 ms after
power up before accessing the I2C bus. This will ensure a
free bus and eliminates the need to sample both SCL and
SDA while waiting for the first START condition. The initial-
ization will then consist of interrupt enabling, only. This pro-
cedure gives a reduction of 12 instructions.

Another size reducing method is possible by replacing the
interrupt handling routines with a polling routine. However
this is not recommended due to the reduction of processing
time for other duties.

Handling incoming and outgoing data is time critical. The
user should insert wait states if the code part which handles
incoming or outgoing data is too time consuming (refer to
program code for recommended sizes). For normal mode
I2C operation it’s also possible to increase the crystal fre-
quency.

Procedure for insertion of wait states:

1. Right before the user code, force the SCL line low to
initiate the wait state.

2. Do the user code.

3. Finish the user code by releasing the SCL line.

Program code example (inside user code):
sbi DDRD,DDD4 ; force SCL low to initiate the

; wait state

... ; User data handling code

cbi DDRD,DDD4 ; release SCL to remove the

; wait state

Conclusion
This appl ication note shows how to implement the
AT90S1200 as a multi purpose I2C peripheral device. Nor-
mal mode I2C transfer (100 kHz) is supported by using a 3
MHz or faster crystal or resonator, while fast mode (400
kHz) only is supported for 16 MHz crystals. The use of
interrupts to detect bus activity frees processing resources
when the device is not accessed.

References
[1] The I2C-Bus and How to Use It (Including Specifica-
tions), Philips Semiconductors, April 1995.

Parameter Value

Code Size 160 words

Execution cycles N/A

Register Usage Low registers
 High registers
 Global

:None
:5
:5

Peripherals Usage 2 I/O Pins, Timer/Counter0

Interrupt Usage Timer/Counter0 Overflow Interrupt
External Interrupt0

Register Description

r16 - ‘temp’ Temporary internal register.

r17 - ‘etemp’ Temporary internal register.

r18 - ‘i2cdata’ Contains current received or transmitted data. Only valid inside interrupt user code.

r19 - ‘i2cadr’ Contains current i2c address and direction bit. Do not use for other purposes.

r20 - ‘i2cstat’ Temporary storage for SREG.

