Protecting Data in Serial EEPROMs

National Semiconductor Application Brief 15 Paul Lubeck February 1988

Protecting Data in Serial EEPROMs

National offers a broad line of serial interface EEPROMs which share a common set of features:

- Low cost
- Single supply in all modes (+5V \pm 10%)
- TTL compatible interface
- MICROWIRE™ compatible interface
- · Read-Only mode or read-write mode

This Application Brief will address protecting data in any of National's Serial Interface EEPROMs by using read-only mode.

Whereas EEPROM is non-volatile and does not require V_{CC} to retain data, the problem exists that stored data can be destroyed during power transitions. This is due to either uncontrolled interface signals during power transitions or noise on the power supply lines. There are various hardware design considerations which can help eliminate the problem although the simplest most effective method may be the following programming method.

All National Serial EEPROMs, when initially powered up are in the Program Disable Mode*. In this mode, the EEPROM will abort any requested Erase or Write cycles. Prior to Erasing or Writing it is necessary to place the device in the Program Enable Mode†. Following placing the device in the Program Enable Mode, Erase and Write will remain enabled until either executing the Disable instruction or removing V_{CC}. Having V_{CC} unexpectedly removed often results in uncontrolled interface signals which could result in the EEPROM interpreting a programming instruction causing data to be destroyed.

Upon power up the EEPROM will automatically enter the Program Disable Mode. Subsequently the design should incorporate the following to achieve protection of stored data.

- 1) The device powers up in the read-only mode. However, as a backup, the EWDS instruction should be executed as soon as possible after V_{CC} to the EEPROM is powered up to ensure that it is in the read-only mode.
- 2) Immediately preceding a programming instruction (ERASE, WRITE, ERAL or WRAL), the EWEN instruction should be executed to enable the device for programming; the EWDS instruction should be executed immediately following the programming instruction to return *EWDS or WDS, depending on exact device.

wb3 of wb3, depending on exact device

†EWEN or WEN, depending on exact device.

© 1995 National Semiconductor Corporation TL/D/7085

RRD-B30M105/Printed in U. S. A

the device to the read-only mode and protect the stored data from accidental disturb during subsequent power transients or noise.

3) Special care must be taken in designs in which programming instructions are initiated to store data in the EEP-ROM after the main power supply has gone down. This is usually accomplished by maintaining V_{CC} for the EEP-ROM and its controller on a capacitor for a sufficient amount of time (approximately 50 ms, depending on the clock rate) to complete these operations. This capacitor

must be large enough to maintain V_{CC} between 4.5 and 5.5 volts for the total duration of the store operation, IN-CLUDING the execution of the EWDS instruction immediately following the last programming instruction. FAIL-URE TO EXECUTE THE LAST EWDS INSTRUCTION BEFORE V_{CC} DROPS BELOW 4.5 VOLTS MAY CAUSE INADVERTENT DATA DISTURB DURING SUBSE-QUENT POWER DOWN AND/OR POWER UP TRANSIENTS.

Lit. # 101350

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

 Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.