

HT7630 <u>DC PIR Controller</u>

Features

- Low stand-by current : <30µA
- Operating voltage : 5V~12V
- On-chip regulator
- 40 seconds warm-up

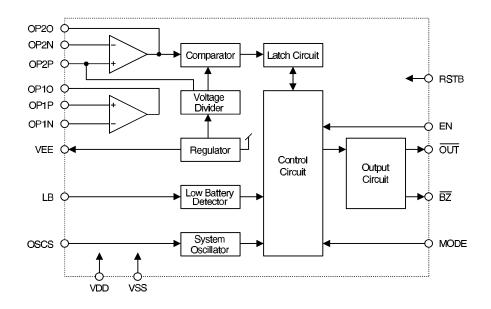
Applications

- PIR motion detector
- Alarm system

Low battery detector 2 stage OP amp

- Multi-function indicator
- 16 pin DIP/SOP package
- Door bell

General Description


The HT7630 is a low power PIR controller LSI designed for battery powered door bell/alarm application. The chip contains operation amplifiers, comparators, a timer, a voltage regulator, 1 oscillator and control circuits.

The chip amplifies the signal from a PIR (Pyroelectric Infra Red) sensor to detect the motion of a human body. When the PIR output meets certain criteria (see functional description), the chip will output an active low signal to trigger a sound generator chip or another device. The

Block Diagram

output duration is 4 seconds for a door bell and 32 seconds for an alarm depending on the MODE pin selection.

It also provides an LB input pin for low battery detection during warm-up, a EN input pin for output enable/disable control and a $\overline{\text{BZ}}$ pin for status indication. An LED or piezo buzzer can be connected to the $\overline{\text{BZ}}$ pin to indicate the following: warm-up, triggering, alarm triggered memory and low battery. The IC is offered in a 16 pin DIP/SOP package.

Pin Assignment

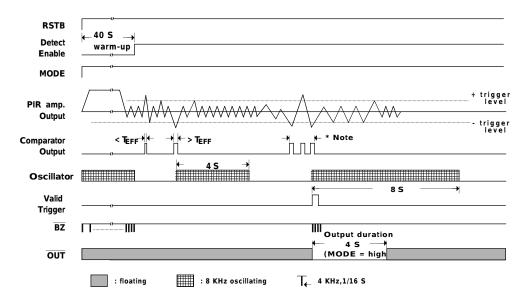
16 DIP/SOP							
	1	16					
RSTB 🗆	2	15	🗆 LB				
OP1P 🗆	3	14					
OP1N 🗆	4	13					
OP10 🗆	5	12	BZ				
OP2P 🗆	6	11	🗆 EN				
OP2N 🗆	7	10	oscs				
0Р20 🗆	8	9	🗆 vss				
HT7630							

Pin Description

Pin No.	Pin Name	I/O	Internal Connect	Description	
1	VEE	0	NMOS	Internal voltage regulator output pin. The output voltage is -4V with respect to VDD.	
2	RSTB	Ι	CMOS	Chip reset input pin. Active low.	
3	OP1P	Ι	PMOS	Noninverting input of OP1.	
4	OP1N	Ι	PMOS	Inverting input of OP1.	
5	OP1O	0	NMOS	OP1 output.	
6	OP2P	Ι	PMOS	Noninverting input of OP2. Internally biased to the comparator window center voltage.	
7	OP2N	Ι	PMOS	Inverting input of OP2.	
8	OP2O	0	NMOS	OP2 output,Connected to the internal comparator input.	
9	VSS	_		Negative power supply.	
10	OSCS	I/O	_	System oscillator I/O pin. Connect external RC to se system frequency. The system frequency ≅ 8KHz for normal application.	
11	EN	I	CMOS	Input pin for output enable/disable control. EN=VDD : Output enable EN=VSS : Output disable	
12	BZ	0	CMOS	Chip status indicator output pin. Drives an LED or piezo buzzer with various patterns for warm-up, triggering, trigger memory and low batter indication. Normal high. Active low.	
13	OUT	0	NMOS	Output pin for driving sound generator chip or other device when triggered by a valid PIR signal. The output duration is 4 second or 32 second depending on the MODE pin selection. Normal open, active low.	

Pin No.	Pin Name	I/O	Internal Connect	Description
14	MODE	Ι	CMOS	Operating mode selection pin. MODE=VDD : Door bell mode MODE=VSS : Alarm mode
15	LB	Ι	CMOS	Low battery level setting pin. Connect to VSS when not using this function.
16	VDD			Positive power supply.

Absolute Maximum Ratings

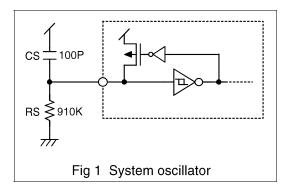

Supply Voltage	–0.3V to 13V	Storage Temperature50°	C to 125°C
Input Voltage VSS-0	.3V to V _{DD} +0.3V	Operating Temperature25	o°C to 75°C

Electrical Characteristics

a 1 1		Tes	t Condition		-		.
Symbol	Parameter	V _{DD} Condition		Min.	Тур.	Max.	Unit
V _{DD}	Operating Voltage	_	_	5	9	12	V
V _{EE}	Regulator Output Voltage	9V	VDD-VEE	3.5	4	4.5	V
I _{STB}	Stand-by Current	9V	No Load, OSC off	_	20	30	μΑ
I _{DD}	Operating Current	9V	No Load, OSC on.	_	45	75	μΑ
V _{IH1}	MODE "H" Input Voltage	9V	VDD-VEE =4V	8	_	_	v
VIL1	MODE "L" Input Voltage	9V	VDD-VEE =4V	_		6.6	V
I _{OH1}	BZ Source Current	9V	V _{OH} =8.1V	-4.5	-7.5	_	mA
IOL1	BZ Sink Current	9V	Vol=0.9V	6	12	_	mA
I _{OL2}	OUT Sink Current	9V		6	12	_	mA
V _{IH2}	EN "H" Input Voltage	_	_	0.8V _{DD}	_	_	V
V _{IL2}	EN "L" Input Voltage	_	_	_	_	$0.2 V_{DD}$	V
F _{SYS}	System Oscillator Frequency	9V	Rs=910K Cs=100p	6.7	8	9.6	KHz
V _{REF}	Low Battery Detector Reference Voltage	9V	with respect to V _{DD}	-1.26	-1.45	-1.67	v
A _{VO}	OP Amp Open Loop Gain	9V	No Load.	60	80	_	dB
Vos	OP Amp Input Offset Voltage	9V	No Load.	_	10	35	mV

Trigger Timing

- Note : 1. The effective comparator output width (T_{EFF}) can be selected to be 24, 32 or 48 ms by mask option. The default is 24 ms.
 - 2. Tout=4 s (Fsys=8KHz) when MODE=VDD. Nonretriggerable.
 - 3. The OUT will be activated if the comparator output meets following criteria:
 - A trigger signal with a sustained duration $\ge 0.34s$
 - More then 3 effective trigger signal within 2s
 - 2 effective trigger signals within 2s with one trigger signal sustained for $\ge 0.16s$
 - 4. The above timing is valid under F_{SYS}=8KHz.


Functional Description

VEE

The VEE supplies power to the analog front end circuits with a stablized voltage which is -4V with respect to VDD.

oscs

This is the system oscillator input pin. Connect to an external RC to generate an 8 KHz system frequency.

OUT

This pin is an NMOS open drain structure. It stays open in stand-by and is active low when triggered by a valid PIR signal.

The output duration is 4 seconds for door bell application mode or 32 second (8, 16, 32 second

selectable by mask option) for alarm application mode depending upon the MODE pin status. The output is nonretriggerable and has an inhibit duration of 0.5 seconds before the next output.

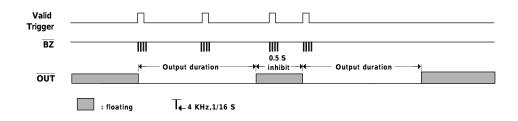


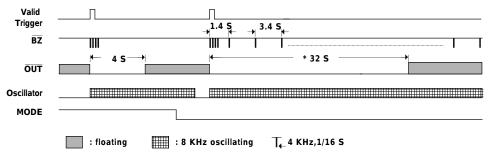
Fig 2 Output timing

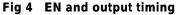
MODE

This pin is used to select the operating mode.

MODE PIN	Operating Mode	Output Duration	Trigger Memory
VDD	Door Bell	4 S	No
VSS	Alarm	* 32 S	Yes

* Note : The output duration in the alarm mode can be set to 8, 16 or 32s by mask option.




Fig 3 MODE status and output timing

ΕN

This pin is used to enable/disable OUT, it is a CMOS input structure.

ΒZ

Warm-up

This is a multi-function chip status indicator output. It can drive an LED or piezo buzzer to show the chip status is. The chip status includes warm-up, triggering, trigger memory and low battery which are shown with various patterns. After power-on, the chip wait 40 seconds for the PIR amplifier to stabilize, during which time the $\overline{\text{BZ}}$ output signal behaves as follows.

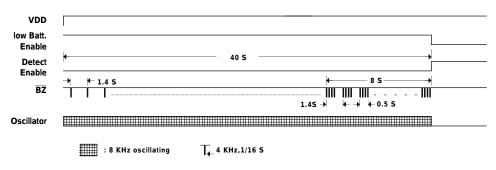
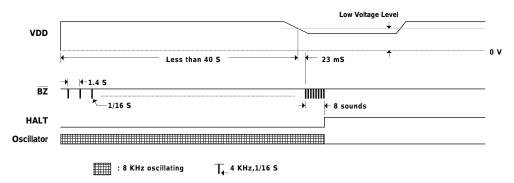
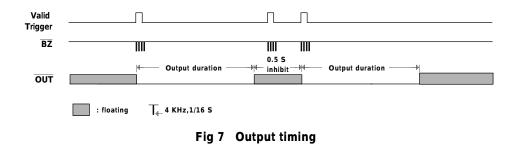



Fig 5 Warm-up timing

Low battery

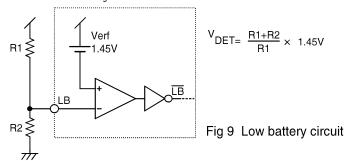

The chip performs low battery detection during the 40 second warm-up period. If a low battery signal is detected the \overline{BZ} output sounds 8 times and then the system halts.


Triggering

The $\overline{\text{BZ}}$ pin output sounds 4 times every time the chip receives a valid PIR trigger signal.

Trigger memory

BZ will keep flashing, at a 0.3Hz rate, after a valid trigger to show that a trigger has been received. This function is provided for alarm mode only.



HOLTEK

LB

This pin is used to set the low battery defection level.

The internal reference voltage is $1.45V\pm15\%$ and the defect voltage is set externally with the R1, R2 voltage divider.

The value of R1+R2 should be kept high enough to ensure low current comsumption.

RSTB

This is the active low system reset pin.V_{IL} of this pin is about $\frac{1}{2}$ (VDD-VEE).

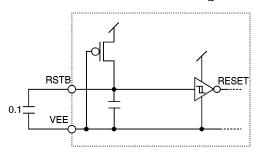


Fig 10 RESET Circuit

PIR Amplifier

Consult the diagram below for details of the PIR front end amplifier.

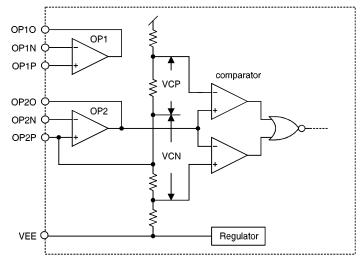


Fig 11 PIR amplifier block diagram

In Fig 11 there are 2 op-amps with different applications. OP1 can be used independently as a first stage inverting or non-inverting amplifier for the PIR.

As the output of OP2 is directly connected to the input of the comparator it is used as a second stage amplifying device.

The non-inverting input of OP2 is connected to the comparator's window centerpoint and can be used to check this voltage and to provide a bias voltage that is equal to the centerpoint voltage of the comparator.

In Fig 11 the comparator can have 3 window

Second Stage Amplifier

Usually the second stage PIR amplifier is a simple capacitively coupled inverting amplifier with low pass configuration. The noninverting input terminal is biased to the center point of the comparator window and the output of the second stage amplifier is directly coupled to the comparator center point.

In Fig 12 OP2P is directly connected to the comparator window center and with the C3 filter can act as the bias for OP2. For this configuration:

Voltage gain

$$Av = \frac{R2}{R1}$$

low cutoff frequency

levels set by mask options.

1. $\frac{1}{16}$ (VDD-VEE), 2. $\frac{1}{11.3}$ (VDD-VEE), 3. $\frac{1}{9}$ (VDD-VEE). If not specified the default window will be set to $\frac{1}{16}$ (VDD-VEE). The preset voltage for VDD-VEE is 4V, the V_{CP} and V_{CN} default value is therefore 0.25V, ($\frac{4}{16}$).

$$\begin{split} f_L &= \frac{1}{2\pi R 1 C 1} \\ high \ cutoff \ frequency \\ f_H &= \frac{1}{2\pi R 2 C 2}. \end{split}$$

By changing the value of R2 the sensitivity can be varied. C1 and C3 must be low leakage types to prevent the DC operating point from changing due to current leakage.

Each op-amp current consumption is approx. $5\mu A$ with all of the op-amps and comparator's working voltage provided by the regulator.

Consult the following diagrams for typical PIR front end circuits.

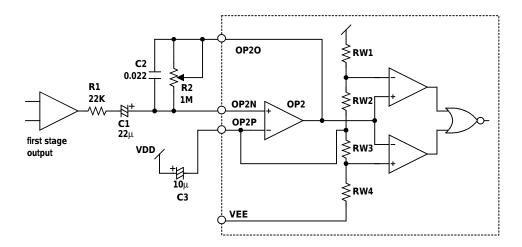
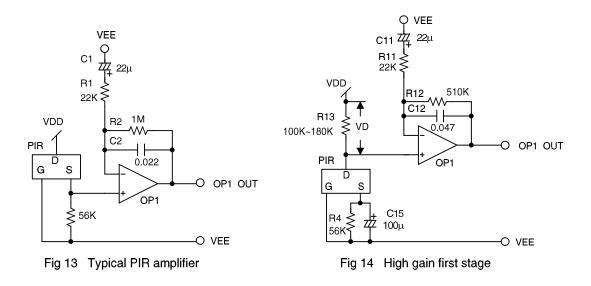


Fig 12 Typical second stage amplifier

First Stage of PIR Amplifier



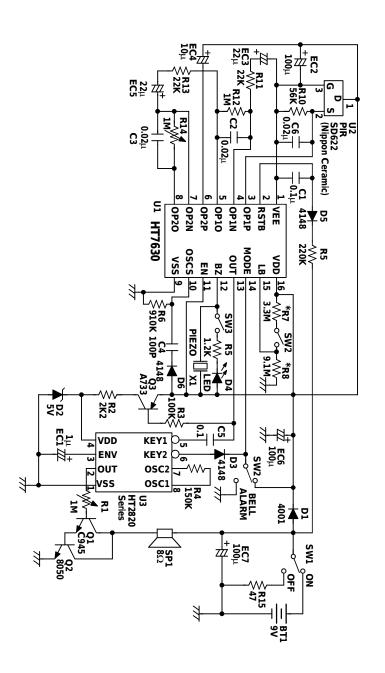

Fig 13 shows a typical first stage amplifier. C2 and R2 form a simple low pass filter with cut off frequency of 7Hz. The low frequency response will be governed by R1 and C1 with cut-off frequency at 0.33Hz.

Fig 13 and 14 are similar but in Fig 14 the amplifier's input signal is taken from the drain of the PIR. This has higher gain than Fig 13. Since OP1 has PMOS inputs V_D must be greater than 1.2V for adequate operation.

$$Av = \frac{(R1+R2)}{R1}$$

Application Circuit

*Note: Adjust R7, R8 to set low battery defection level